

Welcome to Jira-Select’s documentation!

[image: _images/demo.3.gif]
Jira-select is a command-line tool and library that helps you
generate the useful insights you need out of Jira.

Jira has its own query language
but there are many limitations around what JQL is capable of.
Some data is returned in arcane formats
(e.g. sprint names are returned as a string looking something like
com.atlassian.greenhopper.service.sprint.Sprint@14b1c359[id=436...),
data cannot be grouped (there’s nothing like SQL’s GROUP BY statement),
and because of that lack of grouping, there are no aggregation functions –
no SUM-ing story points or estimates per-assignee for you.
And if you want to write a custom function for processing a field,
well, I’m not even sure where you’d begin.
Jira-select makes those things easy.

If you’ve ever found yourself held back by the limitations of Jira’s
built-in query language, this tool may make your life easier.
Using Jira-select you can perform a wide variety of SQL-like query
operations including grouping, aggregation, custom functions, and more.

Contents:

	Quickstart

	Query Format
	Query Structure Overview
	What is a JqlString

	What is an Expression

	Ubiquitous
	select

	from

	Common
	where

	order_by

	group_by

	having

	calculate

	sort_by

	limit

	cache

	Unusual
	expand

	filter

	cap

	Query Lifecycle

	Query Functions
	Jira
	get_issue()

	get_issue_snapshot_on_date()

	sprint_name()

	sprint_details()

	get_sprint_by_id()

	get_sprint_by_name()

	field_by_name()

	estimate_to_days()

	flatten_changelog()

	get_linked_issue_keys()

	Subquery
	subquery()

	Time Analysis
	interval_matching()

	interval_size()

	interval_business_hours()

	Data Traversal
	extract()

	flatten_list()

	Dates
	now()

	timedelta()

	datetime()

	parse_datetime()

	parse_date()

	Intervals
	empty_interval()

	closed_interval()

	open_interval()

	openclosed_interval()

	closedopen_interval()

	Json
	json_loads()

	json_dumps()

	Math
	Basic

	Averages & measures of central location

	Measures of spread

	Numeric Representation

	List Operations
	union()

	Types
	bool()

	int()

	set()

	str()

	tuple()

	type()

	Sorting
	reversed()

	sorted()

	Filtering & Mapping
	simple_filter()

	simple_filter_any()

	Python Builtin Functions

	Logic Shortcuts
	all()

	any()

	Counting
	len()

	Ranges
	range()

	range()

	range()

	Random
	random()

	randrange()

	randrange()

	randrange()

	randint()

	choice()

	Query Parameters

	How to
	Use Functions

	Format data using functions

	Filter results using functions

	Group results & calculate aggregates

	Sort results using functions

	Limit the number of returned results

	Expand Jira Issue Fields

	Examples
	Finding all issues assigned to a particular user

	Summing the number of story points assigned in a particular sprint

	Summing the total estimated size of issues per-person for a given sprint

	Summing story points of issues resolved during a particular sprint

	Summing worklog entries

	Command-Line
	jira-select shell [–editor-mode=MODE] [–disable-progressbars] [–output=PATH] [–format=FORMAT] [–launch-default-viewer]

	jira-select run FILENAME [–format=FORMAT] [–output=PATH] [–view] [–launch-default-viewer]

	jira-select install-user-script SCRIPT [–overwrite] [–name]

	jira-select build-query [–output=PATH]

	jira-select configure

	jira-select setup-instance

	jira-select –instance-name=NAME remove-instance

	jira-select show-instances [–json]

	jira-select store-password USERNAME

	jirafs-select functions [–having=EXPRESSION] [SEARCH_TERM [SEARCH_TERM…]]

	jira-select schema [issues|boards|sprints] [–having=EXPRESSION] [SEARCH_TERM [SEARCH_TERM…]] [–json]

	jira-select run-script FILENAME [ARGS…]

	Writing your own plugins
	Commands

	Functions
	Direct Registration

	Entrypoint

	Formatters

	Troubleshooting
	After running a query in jira-select’s shell subcommand, the output results are printed directly to the screen instead of opening in a spreadsheet viewer

	Sometimes filtering using having (or sorting using sort_by) on a value I see in the output doesn’t work; why not?

	I can’t connect because my Jira instance uses a self-signed certificate

	When attempting to use a field’s human readable name in curly braces, I get a Parse Error

	Reference
	API Reference
	jira-select

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

First, install this package:

pip install jira-select

Next you need to configure jira-select to connect to your jira instance:

jira-select configure

Follow the displayed instructions, then, you can open up your shell:

jira-select shell

From here, you can type out a jira-select query (See Query Format for details).
The format is inspired by SQL, but isn’t quite the same.
The following example will return to you a table showing you which issues are assigned to you.

select:
- key
- summary
from: issues
where:
- assignee = "your-email@somecompany.com"
- resolution is null

The editor uses vi bindings by default; so once you’re ready to submit
your query, press Esc followed by Enter and after a short wait (watch the progressbars), you’ll be shown your results. Press q to exit your results.

See the built-in help (–help) for more options.

Query Format

Jira-select queries are written in a YAML format,
but using section names inspired by SQL.

Here’s a simple example that will return all Jira issues assigned to you:

select:
- Issue Key: key
- Issue Summary: summary
from: issues
where:
- assignee = "your-email@your-company.net"

Here’s a query that uses many more of the possible sections,
but know that in real life, you’re very unlikely to use them all at once:

select:
 My Assignee: assignee
 Key Length: len(key)
from: issues
expand:
- changelog
where:
- project = "MYPROJECT"
order_by:
- created
filter:
- customfield10010 == 140
group_by:
- assignee
having:
- len(key) > 5
sort_by:
- len(key) desc
limit: 100
cap: 10
cache: 86400

Below, we’ll go over what each of these sections are for in detail.

Query Structure Overview

Jira-select Query Sections

	
	Use

	Type

	Evaluated where?

	Can use custom functions?

	Can use query parameters?

	select

	Defines data to return

	List[Expression]

	Local

	Yes

	Yes

	from

	Defines data source

	str

	n/a

	n/a

	No

	where

	Remote filtering of results

	List[JqlString] (for ‘issues’) or Dict[str, Any] (for ‘boards’ and ‘sprints’)

	Remote

	No

	Yes

	order_by

	Remote ordering of results

	List[JqlString]

	Remote

	No

	No

	filter

	Local pre-grouping filtering of results

	List[Expression]

	Local

	Yes

	Yes

	group_by

	Grouping returned rows together

	List[Expression]

	Local

	Yes

	Yes

	having

	Local post-grouping filtering of results

	List[Expression]

	Local

	Yes

	Yes

	sort_by

	Local sorting of results

	List[Expression]

	Local

	Yes

	Yes

	limit

	Remote limiting of the count of results

	int

	Remote

	n/a

	n/a

	expand

	Defines Jira issue field expansions

	List[str]

	Remote

	n/a

	n/a

	cap

	Post-having/group_by limiting of results

	int

	Local

	n/a

	n/a

	cache

	Defines how long to cache Jira results

	int

	Local

	n/a

	n/a

What is a JqlString

A JqlString is standard Jira JQL.
You can find more information about writing JQL
in Jira’s JQL documentation [https://www.atlassian.com/blog/jira-software/jql-the-most-flexible-way-to-search-jira-14].

What is an Expression

An Expression is an expression evaluated by Jira-select.
Expressions have access to all
functions documented in Query Functions.
The variables available for use in your expressions can be determined
by using jira-select schema [issues|boards|sprints].

Expressions are (with one caveat) valid Python expressions.
The single caveat is that you can use curly braces to quote
field names.
These curly-brace-quoted fields will be replaced with the actual
Jira field name before processing the expression in Python.

For example; if you have a custom field named customfield10010
that has a human-readable name of Story Points, you can create
an expression like:

{Story Points} >= 5

this expression will be transformed into:

customfield10010 >= 5

before evaluating the expression in Python.

Ubiquitous

select

This section defines what data you would like to include in your report.
It should be a dictionary mapping the column name with the expression
you would like to display in that column.
This section can use custom functions (see Query Functions for options).

For example:

select:
 My Field Name: somefunction(my_field)

Note

This section supports a handful of formats
in addition to the one discussed here
that you may find in some documentation
or in other examples including:

You can specify columns as a list:

select:
- somefunction(my_field) as "My Field Name"

You can specify a single column as a string:

select: somefunction(my_field) as "My Field Name"

The above formats will be supported for the foreseeable future,
but the dictionary-based format discussed outside this box is the
preferred format for writing queries.

As a shorthand, if you do not provide a value for your dictionary entry,
the dictionary entry’s name will be used as the expression for your column:

select:
 issuetype:
 key:
 summary:
from: issues

In the above example, the fields issuetype, key, and summary
will be displayed in columns matching their field name.

If you would like to return all fields values,
use the expression * as a stirng value to your select statement:

select: "*"
from: issues

Important

Due to yaml parsing rules, the * expression must be quoted.

from

This section defines what you would like to query.
The value should be a string.

There are two query sources currently implemented:

	issues: Searches Jira issues.

	boards: Searches Jira boards.

	sprints: Searches Jira sprints.

Common

where

The where section varies depending upon what kind of data source
you are querying from.

issues

This section is where you enter the JQL for your query.
This should be provided as a list of strings;
these strings will be AND-ed together to generate the query sent to Jira.

where:
- assignee = 'me@adamcoddington.net'

You cannot use custom functions in this section
given that it is evaluated on your Jira server instead of locally.

boards

You can provide key-value pairs to limit the returned boards;
the following parameters are allowed:

	type: The board type. Known values include ‘scrum’, ‘kanban’,
and ‘simple’.

	name: The board name. Returned boards mustinclude the string
you provided somewhere in their name.

where:
 name: 'My Board'

sprints

You can provide key-value pairs to limit the returned boards;
the following parameters are allowed:

	state: The sprint state. Known values include ‘future’, ‘active’,
or ‘closed’.

	board_type: The board type of the board to which this sprint belongs.
Known values include ‘scrum’, ‘kanban’, and ‘simple’.

	board_name: The board name of the board to which this sprint belongs.
Returned boards mustinclude the string you provided somewhere in their name.

where:
 state: 'active'

Note

This type of query is slow
due to the way Jira’s API exposes this type of record.
There is no endpoint allowing us to list sprints directly.
Instead, we must collect a list of sprints
by requesting a list of sprints for each board.

You can improve performance substantially
by using the board_type or board_name parameters
to limit the number of boards we will need to request sprints for.

order_by

This section is where you enter your JQL ordeirng instructions and should
be a list of strings.

You cannot use custom functions in this section
given that it is evaluated on your Jira server instead of locally.

group_by

This section is where you can define how you would like your rows to be grouped.
This behaves similarly to SQL’s GROUP BY statement in that rows sharing
the same result in your group_by expression will be grouped togehter.

For example; to count the number of issues by type that are assigned to you
you could run the following query:

select:
 Issue Type: issuetype
 Key Length: len(key)
from: issues
where:
- assignee = "your-email@your-company.net"
group_by:
- issuetype

Note

When executing an SQL query that uses a GROUP BY statement,
you will always see just a single value for each column
even if that column represents multiple rows’ values.

Unlike standard SQL,
in Jira-select column values will always contain arrays of values
when your column definition does not use a value entered in your group_by section.
If you are surprised about a particular field showing an array holding values that are all the same,
try adding that column to your group_by statement, too.

If you would like to perform an aggregation across all returned values,
you can provide True in your group_by statement.
This works because, for every row, True will evaluate to the same result
causing all rows to be grouped together:

select:
 Key Length: len(key)
from: issues
where:
- assignee = "your-email@your-company.net"
group_by:
- True

You can use custom functions in this section.

having

This section is where you can provide filtering instructions that Jql cannot handle
because they either require local functions or operate on grouped data.

You can use custom functions in this section.

calculate

Perhaps you have an expression you’d like to calculate once
and use multiple times across your query
(e.g. multiple times across select columns,
or in both select and filter at the same time).
You can use the calculate section for performing those calculations
once and then referencing their result in other expressions; for example:

select:
 Hours in Progress: round(in_progress_seconds / 3600)
calculate:
 in_progress_seconds: interval_size(interval_matching(issue, status="In Progress") & interval_business_hours(parse_date(created))).total_seconds() / 28800
from: issues
filter:
- in_progress_seconds > 60
expand:
- changelog

The above example will calculate the total amount of time issues were in progress
in hours while excluding results where they were in progress for fewer than sixty seconds.

sort_by

This section is where you can provide sorting instructions that Jql cannot handle
because they either require local functions or operate on grouped data.

You can use custom functions in this section.

limit

This sets a limit on how many rows will be returned from Jira.
See Query Lifecycle to understand where this fits in the query lifecycle.

If you would like to limit the count of rows after group_by and
having have reduced the count of rows, use cap instead.

Note

limit is handled by Jira itself, so if you would like to
instead limit the number of rows returned after having
and grouping expressions have reduced the row count,
use cap instead.

cache

This will cache the results returned by Jira
for up to the specified number of seconds.
This can be very helpful if you are iterating on changes
to your group_by or having sections
in that you can make minor changes
and avoid the slow process of requesting records
from jira after every change.

Note that the cache parameter can be in one of two forms:

cache: 86400

In this case, we will cache the results for up to 86400 seconds
and will also accept an already-stored cached value
that is up to that number of seconds old.

cache: [300, 86400]

In this case, we will cache the results for up to 86400 seconds,
but will only accept a cached value that is 300 seconds old or newer.

You can also pass null as the second parameter to allow
reading from the cache, but disallow writing a new cached value,
or pass null as the first parameter to disallow using an existing cache,
but allowing storing a new value.

Note that to take full advantage of caching,
you may also want to use the filter feature described below.
Using it can let you take better advantage of your cached values.

Unusual

expand

Jira has a concept of “field expansion”,
and although by default Jira-select will fetch “all” data,
that won’t actually return quite all of the data.
You can find more information about what data this will return
by reading the Jira documentation covering
“Search for issues using JQL (GET)” [https://developer.atlassian.com/cloud/jira/platform/rest/v3/api-group-issue-search/#api-rest-api-3-search-get].

filter

In most cases, using where (pre-grouping/having, processed by Jira)
and having (post-grouping) are sufficient.
But there are scenarios where you might want to filter rows
between these two steps. For example:

	Jql doesn’t provide the functionality you need for filtering your resultset,
but you’ll be using a group_by statement, too, and thus can’t just use
having; because by that point, the field you need to filter on will
have been grouped with others.

	You are using a long cache interval to quickly iterate on your query and
do not want to have to update your where expression since changing that
will cause us to not use the cached results.

In these cases, you can enter the same sorts of expressions
you’d use in a having statement in your filter statement
as a sort of local-side equivalent of where.

You can use custom functions in this section.

cap

This sets a limit on how many rows will be returned,
but unlike limit is evaluated locally.

This can be used if you want your having or group_by
statements to have access to as much data as possible
(and thus do not want to use limit
to reduce the number of rows returned from Jira),
but still want to limit the number of rows in your final document.

Query Lifecycle

 graph LR
 req([Request])
 req-->where
 subgraph Cacheable
 subgraph Remote
 where-->order_by
 order_by-->limit
 end
 end
 subgraph Local
 limit-->calculate
 calculate-->filt[filter]
 filt[filter]-->group_by
 group_by-->having
 having-->sort_by
 sort_by-->cap
 cap-->select
 end
 result([Display])
 select-->result

Jira-select queries are evaluated in many steps across two phases:

	Remote

	JQL Query (where, order_by, and limit)

	Local

	Calculating (calculate)

	Filtering (filter)

	Grouping (group_by)

	Filtering (having)

	Sorting (sort_by)

	Capping count of results (cap)

	Rendering results (select)

The steps in the “Remote” section are accomplished entirely by Jira
and thus are limited to the capabilities of JQL.
The result of this part of the query processor can be cached
by using the cache query parameter.

The steps in the “Local” section are accomplished on your local machine
by Jira-select, and thus can use custom functions.

Query Functions

Jira-select provides a long list of functions out-of-the-box, and you can
add your own if these are not enough.

Jira

	
get_issue(ticket_number: str) → jira.resources.Issue

	Fetch a Jira issue by its issue key (e.g. MYPROJECT-1045).

This will return a jira.resources.Issue object; you can access
most fields via its fields property, eg:

get_issue(field_holding_issue_key).fields.summary

	
get_issue_snapshot_on_date(issue: jira.resources.Issue) → jira_select.types.IssueSnapshot:

	Reconstruct the state of an issue at a particular point in time
using the issue’s changelog.

You will want to pass the literal value issue as the first parameter of this function.
Jira-select provides the jira.resources.Issue object itself under that name,
and this function will use both that object and the changes recorded in the changelog field
for getting an understanding of what the issue looked liked at a particular point in time.

This function requires that you set the query expand option
such that it includes changelog for this to work correctly –
if you do not do that, this function will fail.

select:
 snapshot: get_issue_snapshot_on_date(issue, parse_datetime('2022-01-01'))
from: issues
expand:
- changelog

The returned snapshot is not a jira.resources.Issue object,
but instead a jira_select.types.IssueSnapshot object
due to limitations around what kinds of data can be gathered
from the snapshot information.
The most important difference between a jira_select.types.IssueSnapshot and a jira.resources.Issue object is
that the jira_select.types.IssueSnapshot object is
a simple dict[str,str] object in which
the value of the dict entries is always the str-ified
field value.

	
sprint_name(sprint_blob: str) → Optional[str]

	Shortcut for returning the name of a sprint via its ID. Equivalent
to calling sprint_details(sprint_blob).name.

	
sprint_details(sprint_blob: str) → Optional[jira_select.functions.sprint_details.SprintInfo]

	Returns an object representing the passed-in sprint blob.

Jira returns sprint information on an issue via strings looking something like:

com.atlassian.greenhopper.service.sprint.Sprint@14b1c359[id=436,rapidViewId=153,state=CLOSED,name=MySprint,goal=Beep Boop,startDate=2020-03-09T21:53:07.264Z,endDate=2020-03-23T20:53:00.000Z,completeDate=2020-03-23T21:08:29.391Z,sequence=436]

This function will extract the information found in the above string
into a jira_select.functions.sprint_details.SprintInfo object
allowing you to access each of the following properties:

	id: Sprint ID number

	state: Sprint state

	name: Sprint name

	startDate: Sprint starting date (as datetime)

	endDate: Sprint ending date (as datetime)

	completeDate: Sprint completion date (as datetime)

	
get_sprint_by_id(id: int) → Optional[jira.resources.Sprint]

	This function will request the information for the sprint specified by
id from your Jira server and return it as a jira.resources.Sprint
object.

	
get_sprint_by_name(board_name_or_id: Union[str, int], sprint_name: str) → Optional[jira.resources.Sprint]

	This function will request the information for the sprint matching
the specified name and belonging to the specified board. This will
be returned as a jira.resources.Sprint resource.

	
field_by_name(row: Any, display_name: str) → Optional[str]

	Returns value for field having the specified display name.

Note

You probably do not nee to use this function.
We provide another, simpler, method for getting
the value of a field by its human-readable name–
just place the human-readable name in between
curly braces in your query expression; eg:

select
 Story Points: "{Story Points}"
from: issues

Note

You will almost certainly want to provide the parameter named
issue as the first argument to this function.
Jira-select provides the raw row data to functions under this variable name.

In Jira, custom fields are usually named something like customfield_10024
which is, for most people, somewhat difficult to remember. You can use
this function to get the field value for a field by its display name instead
of its ID.

Example:

select
 - field_by_name(issue, "Story Points") as "Story Points"
from: issues

	
estimate_to_days(estimate_string: str, day_hour_count=8) → Optional[float]

	Converts a string estimation (typically stored in timetracking.originalEstimate)
into an integer count of days.

The timetracking.originalEstimate field contains values like 1d 2h 3m;
using this function will transform such a value into 1.25625.

	
flatten_changelog(changelog) → List[jira_select.functions.flatten_changelog.ChangelogEntry]

	Converts changelog structure from your returned Jira issue into a
flattened list of jira_select.functions.flatten_changelog.ChangelogEntry
instances.

Note

You must use the expand option of changelog for Jira to
return to you changelog information in your query; eg:

select:
 changelog: flatten_changelog(changelog)
from: issues
expand:
- changelog

If you do not provide the necessary expand option, this
function will raise an error.

Every member of the returned list has the following properties:

	author (str): Author of the change

	created (datetime.datetime): When the change took place

	id (int): The ID of the changelog entry

	field (str): The name of the field that was changed

	fieldtype (str): The type of the field that was changed

	fromValue (Optional[Any]): The original value of the field. Note that
the original Jira field name for this is from.

	fromString (Optional[str]): The original value of the field as a
string.

	toValue (Optional[Any]): The final value of the field. Note that
the original Jira field name for this is ``to`.

	toString (Optional[str]): The final value of the field as a
string.

This returned list of records can be filtered with simple_filter
to either find particular entries or filter out rows that do not
have an entry having particular characteristics.

	
get_linked_issue_keys(issue: jira.resources.Issue, link_type: str | None = None) → list[str]:

	Return a list of issue keys that are related to the relevant issue via the specified relation type (e.g. causes, is associated with, etc.).

You will want to pass the literal value issuelinks as the first parameter of this function. This will provide this function with the list of issuelinks your issue has.

If link_type is unspecified, all related issue keys will be returned.

For example, to find the keys for all issues that were caused by a particular issue, you could run the following query:

select:
 caused_bugs: get_linked_issue_keys(issuelinks, 'causes')
from: issues
where:
- type = 'Bug'

Subquery

	
subquery(subquery_name, **params) → Any:

	Runs a subquery by name with the provided parameters.

For example: you can get the time intervals during which an issue
and its associated subtasks were in the “In Progress” status with
a query like so:

select:
 self_and_child_intervals_in_progress: interval_matching(issue, status="In Progress") | union(subquery("children", key=issue.key))
from: issues
subqueries:
 children:
 select:
 in_progress_intervals: interval_matching(issue, status='In Progress')
 from: issues
 where:
 - parent = "{params.key}"
 expand:
 - changelog
expand:
- changelog

Your specified **params will become available to the subquery via {params.*};
in the above example, {params.key} will be set to the value of the outer query’s
issue.key.

Unless specifically specified,
a subquery will use the same cache settings as the parent query.

Warning

If you would like your subquery’s cache to be effective,
only pass simple values in **params.

The string representation of an object is used for calculating cache
keys, and many objects include information in their default
string representations that vary between instantiations.
If things like, for example, the memory address of an object appears in
its string representation, the cache key will never match,
and the cached value will not be used.

A common way that this problem might occur is if you were to pass the
entire issue object to the subquery.
Instead of passing the entire issue object to the subquery,
pass simple values from it as shown in the example above.

Time Analysis

	
interval_matching(issue, **query_params: dict[str, Any]) → portion.Interval

	See simple_filter function for information about how to specify query_params.

Will return an interval covering segments in which the provided issue
matches the conditions specified by query_params.

Note

Contrary to what you might guess,
a single portion.Interval object
can represnt multiple ranges of time.

Note that portion.Interval objects can be used with logical operations like |, &, and -.

	
interval_size(interval: portion.Interval) → datetime.timedelta

	For a provided interval, return the total amount of time that the interval’s
segments span.

	
interval_business_hours(min_date: datetime.date | None = None, max_date: datetime.date | None = None, start_hour: int = 9, end_hour: int = 17, timezone_name: str | None = None, work_days: Iterable[int] = (1, 2, 3, 4, 5)) → portion.Interval:

	Returns an interval having segments that correspond with the “business hours”
specified by your paramters.

This is particularly useful when used in conjunction with interval_matching
and interval_size above for determining the amount of time an issue was
actively in a particular state, for example:

select:
 total_time_in_progress: interval_size(interval_matching(issue, status="In Progress") & interval_business_hours(parse_date(created)))
from: issues

This will find all segments of time during which the relevant issue was
in the “In Progress” status during business hours, then return the
amount of time that those segments spanned.

Note

A naive implementation of this sort of time analysis might use actual,
raw clock time, but consider the following two situations:

	MYPROJECT-01 moves from “To Do” into “In Progress” at 4:55PM, just
five minutes before the end of the day, then the next day moves
from “In Progress” into “Done” at 9:05AM, five minutes after the
beginning of the next day.

	MYPROJECT-02 moves from “To Do” into “In Progress” at 10:00AM and
in the same day from “In Progress” into “Done” at 4:00PM.

Clearly, MYPROJECT-02 was being “worked on” for more time than
MYPROJECT-01, but let’s see how various algorithms might measure
that time.

If we use raw clock time:

	MYPROJECT-01: 16.2h (81 times more than the actual working time)

	MYPROJECT-02: 6h

If we only measure time happening between 9A and 5P:

	MYPROJECT-01: 0.2h (the actual working time)

	MYPROJECT-02: 6h (the actual working time)

Of course, this does introduce one inaccuracy that may,
depending on how predicable your team’s working hours are,
make this behavior undesirable:
time spent working on an issue outside of business hours isn’t counted.
Typically, though,
the amount of time an issue might be worked on outside those hours
will be much smaller
than the amount of excess time
using raw clock time directly would count.

	min_date: The minimum date to add the business hours of to your interval.
By default, 365 days before now.

	max_date: The (exclusive) maximum date to add the business hours of to
your interval. By default: tomorrow.

	start_hour: The work day starting hour. Defaults to 9 (i.e. 9 AM)

	end_hour: The work day ending hour. Defaults to 17 (i.e 5 PM)

	timezone_name: The timezone to interpret start_hour and
end_hour in.

	
	work_days: The days of the week to count as work days; 0 = Sunday,
	1 = Monday… 6 = Saturday.

Data Traversal

	
extract(field: Iterable[Any], dotpath: str) → Iterable[Any]

	For every member of field, walk through dictionary keys or object
attributes described by dotpath and return all non-null results as
an array.

Note

Although this will work,
it is not necessary to use this for traversing into properties of
grouped rows. If your selected field is an object having a value
you’d like to select, you can simply use dotpath traversal to reach
the value you’d like.

This function works for both dictionaries and objects.

	
flatten_list(field: List[List[Any]]) → List[Any]

	For a list containing a lists of items, create a single list of
items from the internal lists.

The above is a little bit difficult to read, but in principle
what this function does is convert values like:

[[1, 2, 3], [4, 5, 6]]

into a single list of the shape:

[1, 2, 3, 4, 5, 6]

Dates

	
now(**replacements) → datetime.datetime

	Return “now” as a timezone-aware datetime.datetime object.

Additional parameters can be passed via keyword arguments;
these values will be applied
to the datetime.datetime object
via its replace method.
See Python’s documentation [https://docs.python.org/3/library/datetime.html#datetime.datetime.replace] for for more information .

If you would like to obtain a timezone-unaware datetime object,
pass tzinfo=None as a keyword argument.

	
timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0) → datetime.timedelta

	Returns a datetime.timedelta object.

This object can be used in math
with existing ``datetime.datetime``objects.

	
datetime(year, month, day, hour=0, minute=0, second=0, microsecond=0, tzinfo=None, *, fold=0) → datetime.datetime

	Returns a datetime.datetime object.

To obtain a date object, call .date() on the return value
of this function.

	
parse_datetime(datetime_string: str, *args, **kwargs) → datetime.datetime

	Parse a date string into a datetime object.

This relies on python-dateutil; there are many additional options available
that you can find documented here [https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse].

	
parse_date(date_string: str, *args, **kwargs) → datetime.date

	Parse a date string into a date object.

This relies on python-dateutil; there are many additional options available
that you can find documented here [https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse].

Intervals

	
empty_interval() → portion.Interval

	

	
closed_interval() → portion.Interval

	

	
open_interval() → portion.Interval

	

	
openclosed_interval() → portion.Interval

	

	
closedopen_interval() → portion.Interval

	

Json

	
json_loads(json: str) → Union[Dict, List]

	Parse a JSON string.

	
json_dumps(obj: Union[Dict, List]) → str

	Encode a dictionary or list into a JSON string.

Math

Basic

See more in information in Python’s Documentation [https://docs.python.org/3/library/functions.html].

	
abs(value: float) → str

	

	
max(values: List[Any]) → Any

	

	
min(values: List[Any]) → Any

	

	
pow(base: float, exponent: float, mod: Optional[int]) → float

	

	
round(value: float, ndigits: int = 0) → float

	

	
sum(values: List[Any]) → Any

	

Averages & measures of central location

See more in information in Python’s Documentation [https://docs.python.org/3/library/statistics.html].

	
mean(values: List[Any]) → Any

	

	
fmean(values: List[Any]) → float

	Requires Python 3.8

	
geometric_mean(values: List[Any]) → float

	Requires Python 3.8

	
harmonic_mean(values: List[Any]) → Any

	

	
median(values: List[Any]) → Any

	

	
median_low(values: List[Any]) → Any

	

	
median_high(values: List[Any]) → Any

	

	
median_grouped(values: List[Any], interval: int = 1) → Any

	

	
mode(values: List[Any]) → Any

	

	
multimode(values: List[Any]) → List[Any]

	Requires Python 3.8

	
quantiles(values: List[Any], n=4, method=Literal['exclusive', 'inclusive']) → Iterable[Iterable[Any]]

	Requires Python 3.8

Measures of spread

See more in information in Python’s Documentation [https://docs.python.org/3/library/statistics.html].

	
pstdev(values: List[Any], mu=Optional[float]) → Any

	

	
pvariance(values: List[Any], mu=Optional[float]) → Any

	

	
stdev(values: List[Any], xbar=Optional[float]) → Any

	

	
variance(values: List[Any], xbar=Optional[float]) → Any

	

Numeric Representation

See more in information in Python’s Documentation [https://docs.python.org/3/library/functions.html].

	
bin(value: int) → str

	

	
hex(value: int) → str

	

	
oct(value: int) → str

	

	
ord(value: str) → int

	

List Operations

	
union(iterable: Iterable[X]) → X

	

Types

See more in information in Python’s Documentation [https://docs.python.org/3/library/functions.html].

	
bool(value: Any) → bool

	

	
int(value: Any) → int

	

	
set(value: Any) → set

	

	
str(value: Any) → str

	

	
tuple(value: Any) → tuple

	

	
type(value: Any) → str

	

Sorting

See more in information in Python’s Documentation [https://docs.python.org/3/library/functions.html].

	
reversed(iterable: List[Any]) → Iterable[List[Any]]

	

	
sorted(iterable: List[Any]) → Iterable[List[Any]]

	

Filtering & Mapping

	
simple_filter(iterable: Iterable[Any], **query_params: Dict[str, Any]) → Iterable[Any]

	

	
simple_filter_any(iterable: Iterable[Any], **query_params: Dict[str, Any]) → Iterable[Any]

	These functions provide you with a simple way of filtering lists using
a syntax reminiscent of Django’s ORM query filter parameters.

	simple_filter: All provided query_params must match for the row
to be returned.

	simple_filter_any: At least one provided param in query_params
must match for the row to be returned.

For example; to find issues having become resolved between two dates,
you could run a query like the following:

select: "*"
from: issues
filter:
- simple_filter(
 flatten_changelog(changelog),
 field__eq="resolution",
 toValue__ne=None,
 created__lt=parse_datetime("2020-02-02"),
 created__gt=parse_datetime("2020-02-01"),
)
expand:
- changelog

Consult the documentation for QueryableList [https://github.com/kata198/QueryableList#user-content-operations]
for information about the full scope of parameters available.

Python Builtin Functions

See more in information in Python’s Documentation [https://docs.python.org/3/library/functions.html].

	
filter(callable: Callable, Iterable[Any]) → Iterable[Any]

	

	
map(callable: Callable, Iterable[Any]) → Iterable[Any]

	

Logic Shortcuts

See more in information in Python’s Documentation [https://docs.python.org/3/library/functions.html].

	
all(iterable: List[Any]) → bool

	

	
any(iterable: List[Any]) → bool

	

Counting

See more in information in Python’s Documentation [https://docs.python.org/3/library/functions.html].

	
len(iterable: List[Any]) → int

	You might be tempted to use count() given how we share many
patterns with SQL, but this is what you actually want to use.

Ranges

See more in information in Python’s Documentation [https://docs.python.org/3/library/functions.html].

	
range(stop: int) → Iterable[int]

	

	
range(start: int, stop: int) → Iterable[int]

	

	
range(start: int, stop: int, step: int) → Iterable[int]

	

Random

See more in information in Python’s Documentation [https://docs.python.org/3/library/random.html].

	
random() → float

	

	
randrange(stop: int) → int

	

	
randrange(start: int, stop: int) → int

	

	
randrange(start: int, stop: int, step: int) → int

	

	
randint(low: int, high: int) → int

	

	
choice(Sequence[Any]) → Any

	

Query Parameters

When writing some queries that you’d like to reuse later,
you may find a reason to want to pass-in a parameter at query runtime
instead of altering the query directly.
You can use query parameters for that.

For a contrived example,
the below query will require that you specify
a query parameter project that will
be used when interpreting the query.

select:
 Issue Key: key
from: issues
where:
- project = "{params.project}"
- updated > "2023-01-01"

Note

See the “Can use query parameters?” section
of Query Structure Overview
for information about where these may be used.

You can specify the parameters to use
via the --param command-line argument like so:

jira-select run-query --param="project=MYPROJECT" my-query.yaml

How to

Use Functions

Your select, having, group_by, and sort_by sections have access
to a wide range of functions as well as to the full breadth
of Python syntax. If the built-in functions aren’t enough, you can
also just write your own and either register them at runtime or make
them persistently available via a setuptools entrypoint.

See Query Functions for a complete list of built-in functions.

Format data using functions

select:
 Status: status
 Summary: summary
 Story Points: "{Story Points}"
 Spring Count: len(customfield_10010)
 Sprint Name: sprint_name(customfield_10010[-1])
from: issues

In the above example, two of the displayed columns are processed with
a function:

	Sprint Count: Will render the number of array elements in the field
containing the list of sprints in which this issue was present.

	Sprint Name: Will show the name of the last sprint associated with
the displayed issue.

Filter results using functions

select:
 Status: status
 Summary: summary
 Story Points: "{Story Points}"
from: issues
having:
 # The quoting below is required only because the first character of line
 # being a double-quote causes YAML parsers to parse the line differently
 - '"Sprint #19" in sprint_name(customfield_10010[-1])'

In the above example, the issues returned from Jira will be compared against
each constraint you’ve entered in the having section; in this case, all
returned issues not having the string “Sprint #19” in the name of the last
sprint associated with the displayed issue will not be written to your output.

Note

having entries are processed locally instead of on the
Jira server so filtering using having entries is slower than
using standard Jql due to the amount of (potentially) unnecessary data
transfer involved. It is recommended that you use having only when
your logic cannot be expressed in standard Jql (i.e. in the where section).

Group results & calculate aggregates

You can group and/or aggregate your returned rows by using group_by:

select:
 Status: status
 Count: count(key)
from: issues
group_by:
 - status

You’ll receive just a single result row for each status, and a count
of how many records shared that status in the second column.

Sort results using functions

You can order your entries using any expression, too:

select:
 Status: status
 Count: count(key)
from: issues
group_by:
 - status
sort_by:
 - count(key) desc

This will sort all returned tickets, grouped by status, in descending order
from the status that has the most tickets to the one that has the
fewest.

Note

The sort_by section is evaluated locally instead of by your Jira
server. In situations where your expression can be evaluated in Jql,
you will have faster performance using the order_by section.

Limit the number of returned results

You can limit the number of results returned by adding a limit to your query:

select:
 Key: key
 Status: status
 Summary: summary
from: issues
where:
 - assignee = "me@adamcoddington.net"
limit: 10

Be aware that this limit is handled by Jira;
so only the first N records will be available for downstream steps
in the Query Lifecycle.

Expand Jira Issue Fields

You can ask Jira to expand issue fields by adding an expand element to your query:

select:
 Key: key
 Status: status
 Summary: summary
from: issues
expand:
 - transitions

The meaning of these expansions is defined by Jira; you can find more information
in Jira’s documentation [https://developer.atlassian.com/cloud/jira/platform/rest/v3/intro/#expansion].

Examples

Finding all issues assigned to a particular user

select: "*"
from: issues
where:
- assignee = "some-user@some-company.com"

Summing the number of story points assigned in a particular sprint

select:
 Total Story Points: sum({Story Points})
from: issues
where:
- project = "MYPROJECT"
group_by:
- True
having:
- '"My Sprint Name" in sprint_name({Sprint}[-1])'

In Jira, your “Story Points” and “Sprint” fields may have any number of names
since they’re “Custom Fields”
– their real names are things like
customfield10024 and customfield10428,
but may vary instance to instance.
You can use the field name directly in your query,
but if you know only the “human-readable” name
for your field, you can provide it in brackets
as shown above with – {Story Points} and {Sprint}.

The where limitation here is used solely for reducing the number of records needing to be downloaded,
and can be omitted if you are willing to wait.

The group_by expression here is to make all of your rows be grouped together
so the sum operation in your select block will operate over all of the returned rows.
True is used because that expression will evaluate to the same value for every row.

In the having section, you can see a fairly complicated expression
that takes the last sprint associated with each returned issue,
looks up that sprint’s name and compares it with the sprint name you are looking for.
We’re using the in python expression here because I can’t remember the full name,
but I can remember part of it.
You’ll notice that the line is quoted;
that’s necessary only because the yaml parser interprets
a line starting with a double-quote
a little differently from one that does not.
Try running the query without quoting the string to see what I mean.

Summing the total estimated size of issues per-person for a given sprint

select:
 Assignee: assignee
 Total Size: sum(map(estimate_to_days, timeestimate.originalEstimate))
from: issues
where:
- project = "MYPROJECT"
group_by:
- assignee
having:
- '"My Sprint Name" in sprint_name({Sprint}[-1])'

See Summing the number of story points assigned in a particular sprint for
an explanation of the having section here.

In Jira, estimations are stored in the timeestimate.originalEstimate field,
but since we’ve grouped our rows by assignee,
timeestimate represents an array of objects
instead of a single object holding the originalEstimate we want.

If we were to stop here, we would receive an array of strings
looking something like:

["1d", "4h", "2d", "30m"]

but, we want to be able to sum these estimates,
so we’ll map each of those through the estimate_to_days function.
This will create an array like this:

[1, 0.5, 2, 0.625]

An array isn’t quite what we want
– we want the total number of days –
so we use the sum function to get that.

See Query Functions for more information.

Summing story points of issues resolved during a particular sprint

select:
 Assignee: assignee
 Story Points: sum({Story Points})
from: issues
where:
- project = 'My Project'
filter:
- simple_filter(
 flatten_changelog(changelog),
 created__gt=parse_datetime(get_sprint_by_name("Board Name", "Sprint Name").startDate),
 created__lt=parse_datetime(get_sprint_by_name("Board Name", "Sprint Name").endDate),
 field__eq="resolution",
 fromValue__eq=None,
 toValue__ne=None
)
group_by:
- assignee
expand:
- changelog

The most important section in the above is in filter;
here you’ll see that we’re using the simple_filter function
for filtering the (flattened) list of changelog entries
to those changelog enttries that were created during the sprint
and indicate that the field resolution was changed from None
to something that is not None.

For a row to be returned from filter,
each expression should return a truthy value.
So rows that do not have a corresponding changelog entry
matching the above requirements
will be omitted from results.

Summing worklog entries

select:
 Total Seconds: sum(extract(flatten_list(worklogs.worklogs), "timespentSeconds"))
from: issues
group_by:
- True

Worklog entries on issues are shaped like this for every row
(unnecessary fields omitted):

{
 "total": 1,
 "worklogs": [
 {"timespentSeconds": 60},
 {"timespentSeconds": 100},
]
}

So, if we were to just select worklogs.worklogs we’d receive an array of results in this shape:

[
 [
 {"timespentSeconds": 60},
 {"timespentSeconds": 100},
],
 [
 {"timespentSeconds": 50},
]
]

The value we need is nested deeply in there, so we should first try to
flatten the list of lists using flatten_list; if we do that, our list
will become:

[
 {"timespentSeconds": 60},
 {"timespentSeconds": 100},
 {"timespentSeconds": 50},
]

We’re still not quite there – the value under timespentSeconds
still needs to be extract``ed
from the inner objects using ``extract;
if we do that we receive:

[
 60,
 100,
 50
]

We finally have something summable & can wrap that set of calls with sum
giving us an answer of 210.

The group_by expression here is to make all of your rows be grouped together
so the sum operation in your select block will operate over all of the returned rows.
True is used because that expression will evaluate to the same value for every row.

Command-Line

jira-select shell [–editor-mode=MODE] [–disable-progressbars] [–output=PATH] [–format=FORMAT] [–launch-default-viewer]

Opens an interactive shell (a.k.a repl) allowing you to interact with Jira
and see your query results immediately afterward.

This is a lot like the “shell” you might have used for postgres, mysql
or sqlite. Except that this one syntax highlights your query and has
tab completion.

	--editor-mode=MODE: Set the editor mode to use; options include
vi and emacs. The default value for this can be set in your
configuration file by setting shell.emacs_mode to True or
False. See --help if you’re not sure where your configuration
file is.

	--disable-progressbars: By defualt, a pretty progressbar is displayed to
provide an indication of how long you might have to wait for results. Using
this option will disable this progressbar.

	--output=PATH: Instead of writing output to a temporary file, write output
to the specified file path. This is useful if you’re using the
--launch-default-viewer option to work around OS-level security limits
around what processes can read temporary files.

	--format=FORMAT: By default, the output is generated in json format,
but you can select a different output format by setting FORMAT to
csv, html, table or json.

	--launch-default-viewer: Display the generated output in your system’s default
viewer for the relevant filetype. You may need to use this argument if you are
running on an operating system in which Visidata is not available
(e.g. Windows when not running under Windows Subsystem for Linux).

jira-select run FILENAME [–format=FORMAT] [–output=PATH] [–view] [–launch-default-viewer]

Executes query specified in FILENAME and returns results in the specified format.

	--format=FORMAT: Sets the output format; options include json (default)
csv, html` and ``table.

	--output=PATH: Sets the output path. If unspecified, the output
will be written to stdout.

	--view: Open the appropriate viewer to view your query results after
the query has completed.

	--launch-default-viewer: Display the generated output in your system’s default
viewer for the relevant filetype.

jira-select install-user-script SCRIPT [–overwrite] [–name]

Installs a python script into your user scripts directory.
User scripts can be used to extend the functionality of jira-select
by letting you write functions that can be available during your
query operation. See Direct Registration for more information
about how to use this.

	SCRIPT: Path to the python script (or - to import from stdin)
to add to your user scripts directory.

	--overwrite: By default, an error will be returned if your query
script matches the name of an existing script. Use this command-line
argument if you would like to overwrite a script having the same name.

	--name: By default, the name will match the incoming filename
(if it’s available). Use this to override that behavior.

jira-select build-query [–output=PATH]

Allows you to interactively generate a query definition file.

	--output=PATH: Sets the output path. If unspecified, the output
will be written to stdout.

jira-select configure

Allows you to interactively configure jira-select to connect
to your Jira instance.

jira-select setup-instance

Configures an instance via the standard command-line arguments.
See --help for more information.
This is intended to be used programmatically;
if you are a human, you probably want to use configure instead.

jira-select –instance-name=NAME remove-instance

Removes configuration for the instance having the specified name.

jira-select show-instances [–json]

Displays for you which instances are currently configured for use with jira-select.

	--json: Instead of displaying results in a pretty-printed table,
export the results as json.

jira-select store-password USERNAME

Allows you to store a password for USERNAME in your system keychain.

	USERNAME: The username to store a password for.

jirafs-select functions [–having=EXPRESSION] [SEARCH_TERM [SEARCH_TERM…]]

Displays functions available for use in a query.

	--having=EXPRESSION: A having expression to use for filtering displayed
results. The provided fields for filtering are name and description.

	SEARCH_TERM: A search term to use for filtering results. The term
is case-insensitive and must be present in either the function name or
description to be displayed.

jira-select schema [issues|boards|sprints] [–having=EXPRESSION] [SEARCH_TERM [SEARCH_TERM…]] [–json]

Displays fields available for querying a given data source.

	--having=EXPRESSION: A having expression to use for filtering displayed
results. The provided fields for filtering are id, type,
description, and raw.

	SEARCH_TERM: A search term to use for filtering results. The term
is case-insensitive and must be present in either the function name or
description to be displayed.

	--json: Instead of displaying results in a pretty-printed table,
export the results as json.

jira-select run-script FILENAME [ARGS…]

Executes the main(**kwargs) function in the specified filename,
passing it two keyword arguments:

	args: An array of extra arguments.

	cmd: The command class (via which you can access configuration,
your jira instance, and other utilities).

This function is intended for use in ad-hoc scripting needs.
If you are the sort of person to be running complex queries
against your Jira instance,
you’re also likely to be the sort of person who
will occasionally write an import script
for ingesting issues into Jira.
This utility function allows you to do that more easily
by letting you lean on the Jira settings
you’ve already configured jira-select to use.

Important

If you want to future-proof your script, be sure that the signature
of your main function accepts **kwargs even if your signature
already captures args and cmd explicitly. New keyword
arguments may be added at any time.

Example contenst of a user script named my_file.py:

def main(args, cmd, **kwargs):
 print(f"Extra args: {args}")
 print(cmd.jira)

Running this file with:

jira-select run-script my_file.py --extra --args

Will print:

Extra args: ['--extra', '--args']
<jira.client.JIRA object at 0x7fc0a47e7e80>

Writing your own plugins

Jira-select relies on setuptools entrypoints for determining what functions, commands, and formatters are available.
This makes it easy to write your own as long as you’re familiar with python packaging,
and if you’re not, you can also register functions at runtime.

Commands

To write your own commands, you need to:

	Create a class that is a subclass of jira_select.plugin.BaseCommand.
This command:

	Must implement a handle function.

	Register that class via a setuptools entrypoint.

	Your entrypoint should be in the jira_select.commands section.

	The name of your entrypoint will become the command’s name.

Functions

For functions, you have two choices:

	You can create and install a user script into your user functions
and within that script register a function using
the method described in Direct Registration below.

	If you plan to distribute your function on PyPI or would like for
it to be installable generally, you can create an entrypoint;
see Entrypoint below for details.

Direct Registration

	Create a function in a python file somewhere.

	Wrapping that function in jira_select.plugin.register_function.

	Install that user script using the install-user-script command.

For example, if you have a file named my_user_function.py in your current directory with the following contents:

from jira_select.plugin import register_function

@register_function
def my_important_function(value):
 """Returns length of `value`

 This function isn't doing anything useful, really, but
 you could of course make it useful if you were to write
 your own.

 """
 return len(value)

you could install it with:

jira-select install-user-function my_user_function.py

and after that, you will have access to my_important_function in a query like:

select:
- my_important_function(key)
from: issues

Entrypoint

	Create a class that is a subclass of jira_select.plugin.Function.
This command:

	Must implement a __call__ function.

	Register that class via a setuptools entrypoint.

	Your entrypoint should be in the jira_select.functions section.

Formatters

To write your own formatter, you need to:

	Create a class that is a subclass of jira_select.plugin.BaseFormatter.
This command:

	Must implement a writerow function.

	Must implement a get_file_extension classmethod returning your
format’s file extension.

	May implement an open method for any setup functionality.

	May implement an close method for any teardown functionality.

	Register that class via a setuptools entrypoint.

	Your entrypoint should be in the jira_select.formatters section.

Troubleshooting

After running a query in jira-select’s shell subcommand, the output results are printed directly to the screen instead of opening in a spreadsheet viewer

The viewer you see being used on in the demo gif is called Visidata [https://www.visidata.org/], and unfortunately it isn’t available on all platforms. You do have a few options, though:

	You could use the --format=table command-line argument to tell jira-select to print your output to the screen in a fancy table mode.

	You could ask jira-select to open the query results in your system’s defualt viewer using the --launch-default-viewer command-line argument. On Windows, you will also need to specify an output path explicitly to make this work by using --output=/some/path/to/write/output/to.csv.

	If you’re running on Windows, you could install this under “Windows Subsystem for Linux” so that you can use the default viewer (visidata). See more information here: Windows Subsystem for Linux Installation Guide for Windows 10 [https://docs.microsoft.com/en-us/windows/wsl/install-win10].

	You could use the run-query subcommand instead of shell. This particular subcommand is a lot less fancy than shell, though.

Sometimes filtering using having (or sorting using sort_by) on a value I see in the output doesn’t work; why not?

Oftentimes the data returned from Jira for a particular field
is not a simple string or number
and is instead a complex object full of other information.
In those cases, we show the most reasonable string value was can obtain
from the object instead of showing you the whole object.

To use such objects in having or sort_by expressions,
you should convert them into a reasonable simple data type
using one of the functions in Types.

If you’re curious about which fields we’re transforming
into strings behind-the-scenes,
try wrapping your column in type
to see the data’s actual type.

If you want to see the data that is being hidden
by the above transformations
– for example: for issuetype –
you can access the raw Jira object via the raw property
of the field; e.g.

select:
 Raw Issue Data: issuetype.raw
from: issues

I can’t connect because my Jira instance uses a self-signed certificate

Don’t worry,
there are two command-line arguments you can use
for configuring certificate verification:

	--disable-certificate-verification: For the brave. This will entirely
disable certificate verification for this instance when configuring it
as well as for all future connections to it.

	--certificate=/path/to/certificate: For the people who have a
security team watching what they’re doing. This will ask jira-select
to use a particular self-signed certificate.

These are overrides available for all commands (not just configure)
so these arguments can only be used
between jira-select and the command you’re running
(probably only configure
as when you use them with configure
those settings will be recorded in your configuration’s settings
for the future):

jira-select --disable-certificate-verification configure

When attempting to use a field’s human readable name in curly braces, I get a Parse Error

YAML, the file format we use for queries in jira-select,
has some parsing rules that will make it interpret a line starting with a
quote, curly brace, bracket, or other reserved characters
differently from other lines.

In cases like those,
you should just wrap your whole query expression in quotes;
for example:

select:
 Story Points: '{Story Points}'
from: issues

Reference

Contents:

	API Reference
	jira-select
	jira_select package
	Subpackages

	Submodules

	jira_select.cmdline module

	jira_select.constants module

	jira_select.exceptions module

	jira_select.plugin module

	jira_select.query module

	jira_select.types module

	jira_select.utils module

	Module contents

	setup module

	tests package
	Submodules

	tests.base module

	tests.test_query module

	tests.test_utils module

	Module contents

API Reference

Contents:

	jira-select
	jira_select package

	setup module

	tests package

jira-select

	jira_select package
	Subpackages
	jira_select.commands package
	Submodules

	jira_select.commands.build_query module

	jira_select.commands.configure module

	jira_select.commands.show_instances module

	jira_select.commands.functions module

	jira_select.commands.run module

	jira_select.commands.schema module

	jira_select.commands.shell module

	jira_select.commands.store_password module

	Module contents

	jira_select.formatters package
	Submodules

	jira_select.formatters.json module

	jira_select.formatters.csv module

	jira_select.formatters.tsv module

	jira_select.formatters.html module

	jira_select.formatters.table module

	jira_select.formatters.raw module

	Module contents

	jira_select.functions package
	Submodules

	jira_select.functions.estimate_to_days module

	jira_select.functions.extract module

	jira_select.functions.field_by_name module

	jira_select.functions.sprint_details module

	jira_select.functions.sprint_name module

	Module contents

	Submodules

	jira_select.cmdline module

	jira_select.constants module

	jira_select.exceptions module

	jira_select.plugin module

	jira_select.query module

	jira_select.types module

	jira_select.utils module

	Module contents

	setup module

	tests package
	Submodules

	tests.base module

	tests.test_query module

	tests.test_utils module

	Module contents

jira_select package

Subpackages

	jira_select.commands package
	Submodules

	jira_select.commands.build_query module

	jira_select.commands.configure module

	jira_select.commands.show_instances module

	jira_select.commands.functions module

	jira_select.commands.run module

	jira_select.commands.schema module

	jira_select.commands.shell module

	jira_select.commands.store_password module

	Module contents

	jira_select.formatters package
	Submodules

	jira_select.formatters.json module

	jira_select.formatters.csv module

	jira_select.formatters.tsv module

	jira_select.formatters.html module

	jira_select.formatters.table module

	jira_select.formatters.raw module

	Module contents

	jira_select.functions package
	Submodules

	jira_select.functions.estimate_to_days module

	jira_select.functions.extract module

	jira_select.functions.field_by_name module

	jira_select.functions.sprint_details module

	jira_select.functions.sprint_name module

	Module contents

Submodules

jira_select.cmdline module

jira_select.constants module

jira_select.exceptions module

jira_select.plugin module

jira_select.query module

jira_select.types module

jira_select.utils module

Module contents

jira_select.commands package

Submodules

jira_select.commands.build_query module

jira_select.commands.configure module

jira_select.commands.show_instances module

jira_select.commands.functions module

jira_select.commands.run module

jira_select.commands.schema module

jira_select.commands.shell module

jira_select.commands.store_password module

Module contents

jira_select.formatters package

Submodules

jira_select.formatters.json module

jira_select.formatters.csv module

jira_select.formatters.tsv module

jira_select.formatters.html module

jira_select.formatters.table module

jira_select.formatters.raw module

Module contents

jira_select.functions package

Submodules

jira_select.functions.estimate_to_days module

jira_select.functions.extract module

jira_select.functions.field_by_name module

jira_select.functions.sprint_details module

jira_select.functions.sprint_name module

Module contents

setup module

tests package

Submodules

tests.base module

tests.test_query module

tests.test_utils module

Module contents

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	
 abs()

 	built-in function

 	
 all()

 	built-in function

 	
 	
 any()

 	built-in function

B

 	
 	
 bin()

 	built-in function

 	
 bool()

 	built-in function

 	
 built-in function

 	abs()

 	all()

 	any()

 	bin()

 	bool()

 	choice()

 	closed_interval()

 	closedopen_interval()

 	datetime()

 	empty_interval()

 	estimate_to_days()

 	extract()

 	field_by_name()

 	filter()

 	flatten_changelog()

 	flatten_list()

 	fmean()

 	geometric_mean()

 	get_issue()

 	get_issue_snapshot_on_date()

 	get_linked_issue_keys()

 	get_sprint_by_id()

 	get_sprint_by_name()

 	harmonic_mean()

 	hex()

 	int()

 	interval_business_hours()

 	interval_matching()

 	interval_size()

 	json_dumps()

 	json_loads()

 	len()

 	map()

 	max()

 	mean()

 	median()

 	median_grouped()

 	median_high()

 	median_low()

 	min()

 	mode()

 	multimode()

 	now()

 	oct()

 	open_interval()

 	openclosed_interval()

 	ord()

 	parse_date()

 	parse_datetime()

 	pow()

 	pstdev()

 	pvariance()

 	quantiles()

 	randint()

 	random()

 	randrange(), [1], [2]

 	range(), [1], [2]

 	reversed()

 	round()

 	set()

 	simple_filter()

 	simple_filter_any()

 	sorted()

 	sprint_details()

 	sprint_name()

 	stdev()

 	str()

 	subquery()

 	sum()

 	timedelta()

 	tuple()

 	type()

 	union()

 	variance()

C

 	
 	
 choice()

 	built-in function

 	
 closed_interval()

 	built-in function

 	
 	
 closedopen_interval()

 	built-in function

D

 	
 	
 datetime()

 	built-in function

E

 	
 	
 empty_interval()

 	built-in function

 	
 estimate_to_days()

 	built-in function

 	
 	
 extract()

 	built-in function

F

 	
 	
 field_by_name()

 	built-in function

 	
 filter()

 	built-in function

 	
 flatten_changelog()

 	built-in function

 	
 	
 flatten_list()

 	built-in function

 	
 fmean()

 	built-in function

G

 	
 	
 geometric_mean()

 	built-in function

 	
 get_issue()

 	built-in function

 	
 get_issue_snapshot_on_date()

 	built-in function

 	
 	
 get_linked_issue_keys()

 	built-in function

 	
 get_sprint_by_id()

 	built-in function

 	
 get_sprint_by_name()

 	built-in function

H

 	
 	
 harmonic_mean()

 	built-in function

 	
 	
 hex()

 	built-in function

I

 	
 	
 int()

 	built-in function

 	
 interval_business_hours()

 	built-in function

 	
 	
 interval_matching()

 	built-in function

 	
 interval_size()

 	built-in function

J

 	
 	
 json_dumps()

 	built-in function

 	
 	
 json_loads()

 	built-in function

L

 	
 	
 len()

 	built-in function

M

 	
 	
 map()

 	built-in function

 	
 max()

 	built-in function

 	
 mean()

 	built-in function

 	
 median()

 	built-in function

 	
 median_grouped()

 	built-in function

 	
 	
 median_high()

 	built-in function

 	
 median_low()

 	built-in function

 	
 min()

 	built-in function

 	
 mode()

 	built-in function

 	
 multimode()

 	built-in function

N

 	
 	
 now()

 	built-in function

O

 	
 	
 oct()

 	built-in function

 	
 open_interval()

 	built-in function

 	
 	
 openclosed_interval()

 	built-in function

 	
 ord()

 	built-in function

P

 	
 	
 parse_date()

 	built-in function

 	
 parse_datetime()

 	built-in function

 	
 pow()

 	built-in function

 	
 	
 pstdev()

 	built-in function

 	
 pvariance()

 	built-in function

Q

 	
 	
 quantiles()

 	built-in function

R

 	
 	
 randint()

 	built-in function

 	
 random()

 	built-in function

 	
 randrange()

 	built-in function, [1], [2]

 	
 	
 range()

 	built-in function, [1], [2]

 	
 reversed()

 	built-in function

 	
 round()

 	built-in function

S

 	
 	
 set()

 	built-in function

 	
 simple_filter()

 	built-in function

 	
 simple_filter_any()

 	built-in function

 	
 sorted()

 	built-in function

 	
 sprint_details()

 	built-in function

 	
 	
 sprint_name()

 	built-in function

 	
 stdev()

 	built-in function

 	
 str()

 	built-in function

 	
 subquery()

 	built-in function

 	
 sum()

 	built-in function

T

 	
 	
 timedelta()

 	built-in function

 	
 tuple()

 	built-in function

 	
 	
 type()

 	built-in function

U

 	
 	
 union()

 	built-in function

V

 	
 	
 variance()

 	built-in function

 _static/file.png

_images/demo.3.gif

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Jira-Select’s documentation!

 		
 Quickstart

 		
 Query Format

 		
 Query Structure Overview

 		
 What is a JqlString

 		
 What is an Expression

 		
 Ubiquitous

 		
 select

 		
 from

 		
 Common

 		
 where

 		
 order_by

 		
 group_by

 		
 having

 		
 calculate

 		
 sort_by

 		
 limit

 		
 cache

 		
 Unusual

 		
 expand

 		
 filter

 		
 cap

 		
 Query Lifecycle

 		
 Query Functions

 		
 Jira

 		
 get_issue()

 		
 get_issue_snapshot_on_date()

 		
 sprint_name()

 		
 sprint_details()

 		
 get_sprint_by_id()

 		
 get_sprint_by_name()

 		
 field_by_name()

 		
 estimate_to_days()

 		
 flatten_changelog()

 		
 get_linked_issue_keys()

 		
 Subquery

 		
 subquery()

 		
 Time Analysis

 		
 interval_matching()

 		
 interval_size()

 		
 interval_business_hours()

 		
 Data Traversal

 		
 extract()

 		
 flatten_list()

 		
 Dates

 		
 now()

 		
 timedelta()

 		
 datetime()

 		
 parse_datetime()

 		
 parse_date()

 		
 Intervals

 		
 empty_interval()

 		
 closed_interval()

 		
 open_interval()

 		
 openclosed_interval()

 		
 closedopen_interval()

 		
 Json

 		
 json_loads()

 		
 json_dumps()

 		
 Math

 		
 Basic

 		
 Averages & measures of central location

 		
 Measures of spread

 		
 Numeric Representation

 		
 List Operations

 		
 union()

 		
 Types

 		
 bool()

 		
 int()

 		
 set()

 		
 str()

 		
 tuple()

 		
 type()

 		
 Sorting

 		
 reversed()

 		
 sorted()

 		
 Filtering & Mapping

 		
 simple_filter()

 		
 simple_filter_any()

 		
 Python Builtin Functions

 		
 Logic Shortcuts

 		
 all()

 		
 any()

 		
 Counting

 		
 len()

 		
 Ranges

 		
 range()

 		
 range()

 		
 range()

 		
 Random

 		
 random()

 		
 randrange()

 		
 randrange()

 		
 randrange()

 		
 randint()

 		
 choice()

 		
 Query Parameters

 		
 How to

 		
 Use Functions

 		
 Format data using functions

 		
 Filter results using functions

 		
 Group results & calculate aggregates

 		
 Sort results using functions

 		
 Limit the number of returned results

 		
 Expand Jira Issue Fields

 		
 Examples

 		
 Finding all issues assigned to a particular user

 		
 Summing the number of story points assigned in a particular sprint

 		
 Summing the total estimated size of issues per-person for a given sprint

 		
 Summing story points of issues resolved during a particular sprint

 		
 Summing worklog entries

 		
 Command-Line

 		
 jira-select shell [–editor-mode=MODE] [–disable-progressbars] [–output=PATH] [–format=FORMAT] [–launch-default-viewer]

 		
 jira-select run FILENAME [–format=FORMAT] [–output=PATH] [–view] [–launch-default-viewer]

 		
 jira-select install-user-script SCRIPT [–overwrite] [–name]

 		
 jira-select build-query [–output=PATH]

 		
 jira-select configure

 		
 jira-select setup-instance

 		
 jira-select –instance-name=NAME remove-instance

 		
 jira-select show-instances [–json]

 		
 jira-select store-password USERNAME

 		
 jirafs-select functions [–having=EXPRESSION] [SEARCH_TERM [SEARCH_TERM…]]

 		
 jira-select schema [issues|boards|sprints] [–having=EXPRESSION] [SEARCH_TERM [SEARCH_TERM…]] [–json]

 		
 jira-select run-script FILENAME [ARGS…]

 		
 Writing your own plugins

 		
 Commands

 		
 Functions

 		
 Direct Registration

 		
 Entrypoint

 		
 Formatters

 		
 Troubleshooting

 		
 After running a query in jira-select’s shell subcommand, the output results are printed directly to the screen instead of opening in a spreadsheet viewer

 		
 Sometimes filtering using having (or sorting using sort_by) on a value I see in the output doesn’t work; why not?

 		
 I can’t connect because my Jira instance uses a self-signed certificate

 		
 When attempting to use a field’s human readable name in curly braces, I get a Parse Error

 		
 Reference

 		
 API Reference

 		
 jira-select

