
Jira-Select Documentation
Release 3.2.0

Adam Coddington

Aug 16, 2023





CONTENTS:

1 Quickstart 3

2 Query Format 5
2.1 Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 What is a JqlString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 What is an Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Ubiquitous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 from . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Common . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 where . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 order_by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 group_by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.4 having . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.5 calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.6 sort_by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.7 limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.8 cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Unusual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 expand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 cap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Query Lifecycle 13

4 Query Functions 15
4.1 Jira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Subquery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Data Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 Dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6 Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.7 Json . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.8 Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.8.1 Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.8.2 Averages & measures of central location . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.8.3 Measures of spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.8.4 Numeric Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.9 List Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.10 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i



4.11 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.12 Filtering & Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.12.1 Python Builtin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.13 Logic Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.14 Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.15 Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.16 Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Query Parameters 27

6 How to 29
6.1 Use Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Format data using functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Filter results using functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4 Group results & calculate aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.5 Sort results using functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.6 Limit the number of returned results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.7 Expand Jira Issue Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Examples 33
7.1 Finding all issues assigned to a particular user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Summing the number of story points assigned in a particular sprint . . . . . . . . . . . . . . . . . . 33
7.3 Summing the total estimated size of issues per-person for a given sprint . . . . . . . . . . . . . . . . 34
7.4 Summing story points of issues resolved during a particular sprint . . . . . . . . . . . . . . . . . . . 34
7.5 Summing worklog entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Command-Line 37
8.1 jira-select shell [–editor-mode=MODE] [–disable-progressbars] [–output=PATH] [–for-

mat=FORMAT] [–launch-default-viewer] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.2 jira-select run FILENAME [–format=FORMAT] [–output=PATH] [–view] [–launch-default-viewer] 37
8.3 jira-select install-user-script SCRIPT [–overwrite] [–name] . . . . . . . . . . . . . . . . . . . . . . 38
8.4 jira-select build-query [–output=PATH] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.5 jira-select configure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.6 jira-select setup-instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.7 jira-select –instance-name=NAME remove-instance . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.8 jira-select show-instances [–json] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.9 jira-select store-password USERNAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.10 jirafs-select functions [–having=EXPRESSION] [SEARCH_TERM [SEARCH_TERM. . . ]] . . . . . . 39
8.11 jira-select schema [issues|boards|sprints] [–having=EXPRESSION] [SEARCH_TERM

[SEARCH_TERM. . . ]] [–json] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.12 jira-select run-script FILENAME [ARGS. . . ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9 Writing your own plugins 41
9.1 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9.2.1 Direct Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.2.2 Entrypoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

9.3 Formatters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10 Troubleshooting 43
10.1 After running a query in jira-select’s shell subcommand, the output results are printed directly to the

screen instead of opening in a spreadsheet viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
10.2 Sometimes filtering using having (or sorting using sort_by) on a value I see in the output doesn’t

work; why not? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
10.3 I can’t connect because my Jira instance uses a self-signed certificate . . . . . . . . . . . . . . . . . 44

ii



10.4 When attempting to use a field’s human readable name in curly braces, I get a Parse Error . . . . . . 44

11 Reference 45
11.1 API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

11.1.1 jira-select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12 Indices and tables 49

Index 51

iii



iv



Jira-Select Documentation, Release 3.2.0

Jira-select is a command-line tool and library that helps you generate the useful insights you need out of Jira.

Jira has its own query language but there are many limitations around what JQL is capable of. Some data is returned
in arcane formats (e.g. sprint names are returned as a string looking something like com.atlassian.greenhopper.
service.sprint.Sprint@14b1c359[id=436...), data cannot be grouped (there’s nothing like SQL’s GROUP BY
statement), and because of that lack of grouping, there are no aggregation functions – no SUM-ing story points or
estimates per-assignee for you. And if you want to write a custom function for processing a field, well, I’m not even
sure where you’d begin. Jira-select makes those things easy.

If you’ve ever found yourself held back by the limitations of Jira’s built-in query language, this tool may make your life
easier. Using Jira-select you can perform a wide variety of SQL-like query operations including grouping, aggregation,
custom functions, and more.

CONTENTS: 1



Jira-Select Documentation, Release 3.2.0

2 CONTENTS:



CHAPTER

ONE

QUICKSTART

First, install this package:

pip install jira-select

Next you need to configure jira-select to connect to your jira instance:

jira-select configure

Follow the displayed instructions, then, you can open up your shell:

jira-select shell

From here, you can type out a jira-select query (See Query Format for details). The format is inspired by SQL, but
isn’t quite the same. The following example will return to you a table showing you which issues are assigned to you.

select:
- key
- summary
from: issues
where:
- assignee = "your-email@somecompany.com"
- resolution is null

The editor uses vi bindings by default; so once you’re ready to submit your query, press Esc followed by Enter and after
a short wait (watch the progressbars), you’ll be shown your results. Press q to exit your results.

See the built-in help (–help) for more options.

3



Jira-Select Documentation, Release 3.2.0

4 Chapter 1. Quickstart



CHAPTER

TWO

QUERY FORMAT

Jira-select queries are written in a YAML format, but using section names inspired by SQL.

Here’s a simple example that will return all Jira issues assigned to you:

select:
- Issue Key: key
- Issue Summary: summary
from: issues
where:
- assignee = "your-email@your-company.net"

Here’s a query that uses many more of the possible sections, but know that in real life, you’re very unlikely to use them
all at once:

select:
My Assignee: assignee
Key Length: len(key)

from: issues
expand:
- changelog
where:
- project = "MYPROJECT"
order_by:
- created
filter:
- customfield10010 == 140
group_by:
- assignee
having:
- len(key) > 5
sort_by:
- len(key) desc
limit: 100
cap: 10
cache: 86400

Below, we’ll go over what each of these sections are for in detail.

5



Jira-Select Documentation, Release 3.2.0

2.1 Query Structure Overview

Table 1: Jira-select Query Sections
Use Type Eval-

uated
where?

Can use
custom
functions?

Can use
query param-
eters?

selectDefines data to re-
turn

List[Expression] Local Yes Yes

from Defines data source str n/a n/a No
where Remote filtering of

results
List[JqlString] (for ‘issues’) or
Dict[str, Any] (for ‘boards’ and
‘sprints’)

Remote No Yes

order_byRemote ordering of
results

List[JqlString] Remote No No

filterLocal pre-grouping
filtering of results

List[Expression] Local Yes Yes

group_byGrouping returned
rows together

List[Expression] Local Yes Yes

havingLocal post-
grouping filtering
of results

List[Expression] Local Yes Yes

sort_byLocal sorting of re-
sults

List[Expression] Local Yes Yes

limit Remote limiting of
the count of results

int Remote n/a n/a

expandDefines Jira issue
field expansions

List[str] Remote n/a n/a

cap Post-
having/group_by
limiting of results

int Local n/a n/a

cache Defines how long to
cache Jira results

int Local n/a n/a

2.1.1 What is a JqlString

A JqlString is standard Jira JQL. You can find more information about writing JQL in Jira’s JQL documentation.

2.1.2 What is an Expression

An Expression is an expression evaluated by Jira-select. Expressions have access to all functions documented in
Query Functions. The variables available for use in your expressions can be determined by using jira-select
schema [issues|boards|sprints].

Expressions are (with one caveat) valid Python expressions. The single caveat is that you can use curly braces to quote
field names. These curly-brace-quoted fields will be replaced with the actual Jira field name before processing the
expression in Python.

For example; if you have a custom field named customfield10010 that has a human-readable name of Story
Points, you can create an expression like:

6 Chapter 2. Query Format

https://www.atlassian.com/blog/jira-software/jql-the-most-flexible-way-to-search-jira-14


Jira-Select Documentation, Release 3.2.0

{Story Points} >= 5

this expression will be transformed into:

customfield10010 >= 5

before evaluating the expression in Python.

2.2 Ubiquitous

2.2.1 select

This section defines what data you would like to include in your report. It should be a dictionary mapping the column
name with the expression you would like to display in that column. This section can use custom functions (see Query
Functions for options).

For example:

select:
My Field Name: somefunction(my_field)

Note: This section supports a handful of formats in addition to the one discussed here that you may find in some
documentation or in other examples including:

You can specify columns as a list:

select:
- somefunction(my_field) as "My Field Name"

You can specify a single column as a string:

select: somefunction(my_field) as "My Field Name"

The above formats will be supported for the foreseeable future, but the dictionary-based format discussed outside this
box is the preferred format for writing queries.

As a shorthand, if you do not provide a value for your dictionary entry, the dictionary entry’s name will be used as the
expression for your column:

select:
issuetype:
key:
summary:

from: issues

In the above example, the fields issuetype, key, and summarywill be displayed in columns matching their field name.

If you would like to return all fields values, use the expression * as a stirng value to your select statement:

select: "*"
from: issues

2.2. Ubiquitous 7



Jira-Select Documentation, Release 3.2.0

Important: Due to yaml parsing rules, the * expression must be quoted.

2.2.2 from

This section defines what you would like to query. The value should be a string.

There are two query sources currently implemented:

• issues: Searches Jira issues.

• boards: Searches Jira boards.

• sprints: Searches Jira sprints.

2.3 Common

2.3.1 where

The where section varies depending upon what kind of data source you are querying from.

issues

This section is where you enter the JQL for your query. This should be provided as a list of strings; these strings will
be AND-ed together to generate the query sent to Jira.

where:
- assignee = 'me@adamcoddington.net'

You cannot use custom functions in this section given that it is evaluated on your Jira server instead of locally.

boards

You can provide key-value pairs to limit the returned boards; the following parameters are allowed:

• type: The board type. Known values include ‘scrum’, ‘kanban’, and ‘simple’.

• name: The board name. Returned boards mustinclude the string you provided somewhere in their name.

where:
name: 'My Board'

8 Chapter 2. Query Format



Jira-Select Documentation, Release 3.2.0

sprints

You can provide key-value pairs to limit the returned boards; the following parameters are allowed:

• state: The sprint state. Known values include ‘future’, ‘active’, or ‘closed’.

• board_type: The board type of the board to which this sprint belongs. Known values include ‘scrum’, ‘kanban’,
and ‘simple’.

• board_name: The board name of the board to which this sprint belongs. Returned boards mustinclude the string
you provided somewhere in their name.

where:
state: 'active'

Note: This type of query is slow due to the way Jira’s API exposes this type of record. There is no endpoint allowing
us to list sprints directly. Instead, we must collect a list of sprints by requesting a list of sprints for each board.

You can improve performance substantially by using the board_type or board_name parameters to limit the number
of boards we will need to request sprints for.

2.3.2 order_by

This section is where you enter your JQL ordeirng instructions and should be a list of strings.

You cannot use custom functions in this section given that it is evaluated on your Jira server instead of locally.

2.3.3 group_by

This section is where you can define how you would like your rows to be grouped. This behaves similarly to SQL’s
GROUP BY statement in that rows sharing the same result in your group_by expression will be grouped togehter.

For example; to count the number of issues by type that are assigned to you you could run the following query:

select:
Issue Type: issuetype
Key Length: len(key)

from: issues
where:
- assignee = "your-email@your-company.net"
group_by:
- issuetype

Note: When executing an SQL query that uses a GROUP BY statement, you will always see just a single value for each
column even if that column represents multiple rows’ values.

Unlike standard SQL, in Jira-select column values will always contain arrays of values when your column definition
does not use a value entered in your group_by section. If you are surprised about a particular field showing an array
holding values that are all the same, try adding that column to your group_by statement, too.

If you would like to perform an aggregation across all returned values, you can provide True in your group_by state-
ment. This works because, for every row, True will evaluate to the same result causing all rows to be grouped together:

2.3. Common 9



Jira-Select Documentation, Release 3.2.0

select:
Key Length: len(key)

from: issues
where:
- assignee = "your-email@your-company.net"
group_by:
- True

You can use custom functions in this section.

2.3.4 having

This section is where you can provide filtering instructions that Jql cannot handle because they either require local
functions or operate on grouped data.

You can use custom functions in this section.

2.3.5 calculate

Perhaps you have an expression you’d like to calculate once and use multiple times across your query (e.g. multiple
times across select columns, or in both select and filter at the same time). You can use the calculate section
for performing those calculations once and then referencing their result in other expressions; for example:

select:
Hours in Progress: round(in_progress_seconds / 3600)

calculate:
in_progress_seconds: interval_size(interval_matching(issue, status="In Progress") &␣

→˓interval_business_hours(parse_date(created))).total_seconds() / 28800
from: issues
filter:
- in_progress_seconds > 60
expand:
- changelog

The above example will calculate the total amount of time issues were in progress in hours while excluding results
where they were in progress for fewer than sixty seconds.

2.3.6 sort_by

This section is where you can provide sorting instructions that Jql cannot handle because they either require local
functions or operate on grouped data.

You can use custom functions in this section.

10 Chapter 2. Query Format



Jira-Select Documentation, Release 3.2.0

2.3.7 limit

This sets a limit on how many rows will be returned from Jira. See Query Lifecycle to understand where this fits in the
query lifecycle.

If you would like to limit the count of rows after group_by and having have reduced the count of rows, use cap
instead.

Note: limit is handled by Jira itself, so if you would like to instead limit the number of rows returned after having
and grouping expressions have reduced the row count, use cap instead.

2.3.8 cache

This will cache the results returned by Jira for up to the specified number of seconds. This can be very helpful if you
are iterating on changes to your group_by or having sections in that you can make minor changes and avoid the slow
process of requesting records from jira after every change.

Note that the cache parameter can be in one of two forms:

cache: 86400

In this case, we will cache the results for up to 86400 seconds and will also accept an already-stored cached value that
is up to that number of seconds old.

cache: [300, 86400]

In this case, we will cache the results for up to 86400 seconds, but will only accept a cached value that is 300 seconds
old or newer.

You can also pass null as the second parameter to allow reading from the cache, but disallow writing a new cached
value, or pass null as the first parameter to disallow using an existing cache, but allowing storing a new value.

Note that to take full advantage of caching, you may also want to use the filter feature described below. Using it can
let you take better advantage of your cached values.

2.4 Unusual

2.4.1 expand

Jira has a concept of “field expansion”, and although by default Jira-select will fetch “all” data, that won’t actually return
quite all of the data. You can find more information about what data this will return by reading the Jira documentation
covering “Search for issues using JQL (GET)”.

2.4. Unusual 11

https://developer.atlassian.com/cloud/jira/platform/rest/v3/api-group-issue-search/#api-rest-api-3-search-get
https://developer.atlassian.com/cloud/jira/platform/rest/v3/api-group-issue-search/#api-rest-api-3-search-get


Jira-Select Documentation, Release 3.2.0

2.4.2 filter

In most cases, using where (pre-grouping/having, processed by Jira) and having (post-grouping) are sufficient. But
there are scenarios where you might want to filter rows between these two steps. For example:

• Jql doesn’t provide the functionality you need for filtering your resultset, but you’ll be using a group_by state-
ment, too, and thus can’t just use having; because by that point, the field you need to filter on will have been
grouped with others.

• You are using a long cache interval to quickly iterate on your query and do not want to have to update your where
expression since changing that will cause us to not use the cached results.

In these cases, you can enter the same sorts of expressions you’d use in a having statement in your filter statement
as a sort of local-side equivalent of where.

You can use custom functions in this section.

2.4.3 cap

This sets a limit on how many rows will be returned, but unlike limit is evaluated locally.

This can be used if you want your having or group_by statements to have access to as much data as possible (and
thus do not want to use limit to reduce the number of rows returned from Jira), but still want to limit the number of
rows in your final document.

12 Chapter 2. Query Format



CHAPTER

THREE

QUERY LIFECYCLE

Jira-select queries are evaluated in many steps across two phases:

• Remote

– JQL Query (where, order_by, and limit)

• Local

– Calculating (calculate)

– Filtering (filter)

– Grouping (group_by)

– Filtering (having)

– Sorting (sort_by)

– Capping count of results (cap)

– Rendering results (select)

The steps in the “Remote” section are accomplished entirely by Jira and thus are limited to the capabilities of JQL. The
result of this part of the query processor can be cached by using the cache query parameter.

The steps in the “Local” section are accomplished on your local machine by Jira-select, and thus can use custom
functions.

13



Jira-Select Documentation, Release 3.2.0

14 Chapter 3. Query Lifecycle



CHAPTER

FOUR

QUERY FUNCTIONS

Jira-select provides a long list of functions out-of-the-box, and you can add your own if these are not enough.

4.1 Jira

get_issue(ticket_number: str)→ jira.resources.Issue
Fetch a Jira issue by its issue key (e.g. MYPROJECT-1045).

This will return a jira.resources.Issue object; you can access most fields via its fields property, eg:

get_issue(field_holding_issue_key).fields.summary

get_issue_snapshot_on_date(issue: jira.resources.Issue)→ jira_select.types.IssueSnapshot:
Reconstruct the state of an issue at a particular point in time using the issue’s changelog.

You will want to pass the literal value issue as the first parameter of this function. Jira-select provides the jira.
resources.Issue object itself under that name, and this function will use both that object and the changes
recorded in the changelog field for getting an understanding of what the issue looked liked at a particular point
in time.

This function requires that you set the query expand option such that it includes changelog for this to work
correctly – if you do not do that, this function will fail.

select:
snapshot: get_issue_snapshot_on_date(issue, parse_datetime('2022-01-01'))

from: issues
expand:
- changelog

The returned snapshot is not a jira.resources.Issue object, but instead a jira_select.types.
IssueSnapshot object due to limitations around what kinds of data can be gathered from the snapshot in-
formation. The most important difference between a jira_select.types.IssueSnapshot and a jira.
resources.Issue object is that the jira_select.types.IssueSnapshot object is a simple dict[str,
str] object in which the value of the dict entries is always the str-ified field value.

sprint_name(sprint_blob: str)→ Optional[str]
Shortcut for returning the name of a sprint via its ID. Equivalent to calling sprint_details(sprint_blob).
name.

sprint_details(sprint_blob: str)→ Optional[jira_select.functions.sprint_details.SprintInfo]
Returns an object representing the passed-in sprint blob.

Jira returns sprint information on an issue via strings looking something like:

15



Jira-Select Documentation, Release 3.2.0

com.atlassian.greenhopper.service.sprint.Sprint@14b1c359[id=436,rapidViewId=153,
→˓state=CLOSED,name=MySprint,goal=Beep Boop,startDate=2020-03-09T21:53:07.264Z,
→˓endDate=2020-03-23T20:53:00.000Z,completeDate=2020-03-23T21:08:29.391Z,
→˓sequence=436]

This function will extract the information found in the above string into a jira_select.functions.
sprint_details.SprintInfo object allowing you to access each of the following properties:

• id: Sprint ID number

• state: Sprint state

• name: Sprint name

• startDate: Sprint starting date (as datetime)

• endDate: Sprint ending date (as datetime)

• completeDate: Sprint completion date (as datetime)

get_sprint_by_id(id: int)→ Optional[jira.resources.Sprint]
This function will request the information for the sprint specified by id from your Jira server and return it as a
jira.resources.Sprint object.

get_sprint_by_name(board_name_or_id: Union[str, int], sprint_name: str)→ Optional[jira.resources.Sprint]
This function will request the information for the sprint matching the specified name and belonging to the spec-
ified board. This will be returned as a jira.resources.Sprint resource.

field_by_name(row: Any, display_name: str)→ Optional[str]
Returns value for field having the specified display name.

Note: You probably do not nee to use this function. We provide another, simpler, method for getting the value of
a field by its human-readable name– just place the human-readable name in between curly braces in your query
expression; eg:

select
Story Points: "{Story Points}"

from: issues

Note: You will almost certainly want to provide the parameter named issue as the first argument to this
function. Jira-select provides the raw row data to functions under this variable name.

In Jira, custom fields are usually named something like customfield_10024 which is, for most people, some-
what difficult to remember. You can use this function to get the field value for a field by its display name instead
of its ID.

Example:

select
- field_by_name(issue, "Story Points") as "Story Points"

from: issues

estimate_to_days(estimate_string: str, day_hour_count=8)→ Optional[float]
Converts a string estimation (typically stored in timetracking.originalEstimate) into an integer count of
days.

16 Chapter 4. Query Functions



Jira-Select Documentation, Release 3.2.0

The timetracking.originalEstimate field contains values like 1d 2h 3m; using this function will trans-
form such a value into 1.25625.

flatten_changelog(changelog)→ List[jira_select.functions.flatten_changelog.ChangelogEntry]
Converts changelog structure from your returned Jira issue into a flattened list of jira_select.functions.
flatten_changelog.ChangelogEntry instances.

Note: You must use the expand option of changelog for Jira to return to you changelog information in your
query; eg:

select:
changelog: flatten_changelog(changelog)

from: issues
expand:
- changelog

If you do not provide the necessary expand option, this function will raise an error.

Every member of the returned list has the following properties:

• author (str): Author of the change

• created (datetime.datetime): When the change took place

• id (int): The ID of the changelog entry

• field (str): The name of the field that was changed

• fieldtype (str): The type of the field that was changed

• fromValue (Optional[Any]): The original value of the field. Note that the original Jira field name for this
is from.

• fromString (Optional[str]): The original value of the field as a string.

• toValue (Optional[Any]): The final value of the field. Note that the original Jira field name for this is
``to`.

• toString (Optional[str]): The final value of the field as a string.

This returned list of records can be filtered with simple_filter to either find particular entries or filter out
rows that do not have an entry having particular characteristics.

get_linked_issue_keys(issue: jira.resources.Issue, link_type: str | None = None)→ list[str]:
Return a list of issue keys that are related to the relevant issue via the specified relation type (e.g. causes, is
associated with, etc.).

You will want to pass the literal value issuelinks as the first parameter of this function. This will provide this
function with the list of issuelinks your issue has.

If link_type is unspecified, all related issue keys will be returned.

For example, to find the keys for all issues that were caused by a particular issue, you could run the following
query:

select:
caused_bugs: get_linked_issue_keys(issuelinks, 'causes')

from: issues
where:
- type = 'Bug'

4.1. Jira 17



Jira-Select Documentation, Release 3.2.0

4.2 Subquery

subquery(subquery_name, **params)→ Any:
Runs a subquery by name with the provided parameters.

For example: you can get the time intervals during which an issue and its associated subtasks were in the “In
Progress” status with a query like so:

select:
self_and_child_intervals_in_progress: interval_matching(issue, status="In Progress

→˓") | union(subquery("children", key=issue.key))
from: issues
subqueries:
children:
select:
in_progress_intervals: interval_matching(issue, status='In Progress')

from: issues
where:
- parent = "{params.key}"
expand:
- changelog

expand:
- changelog

Your specified **params will become available to the subquery via {params.*}; in the above example,
{params.key} will be set to the value of the outer query’s issue.key.

Unless specifically specified, a subquery will use the same cache settings as the parent query.

Warning: If you would like your subquery’s cache to be effective, only pass simple values in **params.

The string representation of an object is used for calculating cache keys, and many objects include information
in their default string representations that vary between instantiations. If things like, for example, the memory
address of an object appears in its string representation, the cache key will never match, and the cached value
will not be used.

A common way that this problem might occur is if you were to pass the entire issue object to the subquery.
Instead of passing the entire issue object to the subquery, pass simple values from it as shown in the example
above.

4.3 Time Analysis

interval_matching(issue, **query_params: dict[str, Any])→ portion.Interval
See simple_filter function for information about how to specify query_params.

Will return an interval covering segments in which the provided issue matches the conditions specified by
query_params.

Note: Contrary to what you might guess, a single portion.Interval object can represnt multiple ranges of time.

Note that portion.Interval objects can be used with logical operations like |, &, and -.

18 Chapter 4. Query Functions



Jira-Select Documentation, Release 3.2.0

interval_size(interval: portion.Interval)→ datetime.timedelta
For a provided interval, return the total amount of time that the interval’s segments span.

interval_business_hours(min_date: datetime.date | None = None, max_date: datetime.date | None = None,
start_hour: int = 9, end_hour: int = 17, timezone_name: str | None = None,
work_days: Iterable[int] = (1, 2, 3, 4, 5))→ portion.Interval:

Returns an interval having segments that correspond with the “business hours” specified by your paramters.

This is particularly useful when used in conjunction with interval_matching and interval_size above for deter-
mining the amount of time an issue was actively in a particular state, for example:

select:
total_time_in_progress: interval_size(interval_matching(issue, status="In Progress

→˓") & interval_business_hours(parse_date(created)))
from: issues

This will find all segments of time during which the relevant issue was in the “In Progress” status during business
hours, then return the amount of time that those segments spanned.

Note: A naive implementation of this sort of time analysis might use actual, raw clock time, but consider the
following two situations:

• MYPROJECT-01 moves from “To Do” into “In Progress” at 4:55PM, just five minutes before the end of the
day, then the next day moves from “In Progress” into “Done” at 9:05AM, five minutes after the beginning
of the next day.

• MYPROJECT-02 moves from “To Do” into “In Progress” at 10:00AM and in the same day from “In
Progress” into “Done” at 4:00PM.

Clearly, MYPROJECT-02 was being “worked on” for more time than MYPROJECT-01, but let’s see how various
algorithms might measure that time.

If we use raw clock time:

• MYPROJECT-01: 16.2h (81 times more than the actual working time)

• MYPROJECT-02: 6h

If we only measure time happening between 9A and 5P:

• MYPROJECT-01: 0.2h (the actual working time)

• MYPROJECT-02: 6h (the actual working time)

Of course, this does introduce one inaccuracy that may, depending on how predicable your team’s working hours
are, make this behavior undesirable: time spent working on an issue outside of business hours isn’t counted.
Typically, though, the amount of time an issue might be worked on outside those hours will be much smaller
than the amount of excess time using raw clock time directly would count.

• min_date: The minimum date to add the business hours of to your interval. By default, 365 days before
now.

• max_date: The (exclusive) maximum date to add the business hours of to your interval. By default: to-
morrow.

• start_hour: The work day starting hour. Defaults to 9 (i.e. 9 AM)

• end_hour: The work day ending hour. Defaults to 17 (i.e 5 PM)

• timezone_name: The timezone to interpret start_hour and end_hour in.

4.3. Time Analysis 19



Jira-Select Documentation, Release 3.2.0

• work_days: The days of the week to count as work days; 0 = Sunday,
1 = Monday. . . 6 = Saturday.

4.4 Data Traversal

extract(field: Iterable[Any], dotpath: str)→ Iterable[Any]
For every member of field, walk through dictionary keys or object attributes described by dotpath and return
all non-null results as an array.

Note: Although this will work, it is not necessary to use this for traversing into properties of grouped rows. If
your selected field is an object having a value you’d like to select, you can simply use dotpath traversal to reach
the value you’d like.

This function works for both dictionaries and objects.

flatten_list(field: List[List[Any]])→ List[Any]
For a list containing a lists of items, create a single list of items from the internal lists.

The above is a little bit difficult to read, but in principle what this function does is convert values like:

[[1, 2, 3], [4, 5, 6]]

into a single list of the shape:

[1, 2, 3, 4, 5, 6]

4.5 Dates

now(**replacements)→ datetime.datetime
Return “now” as a timezone-aware datetime.datetime object.

Additional parameters can be passed via keyword arguments; these values will be applied to the datetime.
datetime object via its replace method. See Python’s documentation for for more information .

If you would like to obtain a timezone-unaware datetime object, pass tzinfo=None as a keyword argument.

timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0)→
datetime.timedelta

Returns a datetime.timedelta object.

This object can be used in math with existing ``datetime.datetime``objects.

datetime(year, month, day, hour=0, minute=0, second=0, microsecond=0, tzinfo=None, *, fold=0)→
datetime.datetime

Returns a datetime.datetime object.

To obtain a date object, call .date() on the return value of this function.

parse_datetime(datetime_string: str, *args, **kwargs)→ datetime.datetime
Parse a date string into a datetime object.

This relies on python-dateutil; there are many additional options available that you can find documented here.

20 Chapter 4. Query Functions

https://docs.python.org/3/library/datetime.html#datetime.datetime.replace
https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse


Jira-Select Documentation, Release 3.2.0

parse_date(date_string: str, *args, **kwargs)→ datetime.date
Parse a date string into a date object.

This relies on python-dateutil; there are many additional options available that you can find documented here.

4.6 Intervals

empty_interval()→ portion.Interval

closed_interval()→ portion.Interval

open_interval()→ portion.Interval

openclosed_interval()→ portion.Interval

closedopen_interval()→ portion.Interval

4.7 Json

json_loads(json: str)→ Union[Dict, List]
Parse a JSON string.

json_dumps(obj: Union[Dict, List])→ str
Encode a dictionary or list into a JSON string.

4.8 Math

4.8.1 Basic

See more in information in Python’s Documentation.

abs(value: float)→ str

max(values: List[Any])→ Any

min(values: List[Any])→ Any

pow(base: float, exponent: float, mod: Optional[int])→ float

round(value: float, ndigits: int = 0)→ float

sum(values: List[Any])→ Any

4.6. Intervals 21

https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse
https://docs.python.org/3/library/functions.html


Jira-Select Documentation, Release 3.2.0

4.8.2 Averages & measures of central location

See more in information in Python’s Documentation.

mean(values: List[Any])→ Any

fmean(values: List[Any])→ float
Requires Python 3.8

geometric_mean(values: List[Any])→ float
Requires Python 3.8

harmonic_mean(values: List[Any])→ Any

median(values: List[Any])→ Any

median_low(values: List[Any])→ Any

median_high(values: List[Any])→ Any

median_grouped(values: List[Any], interval: int = 1)→ Any

mode(values: List[Any])→ Any

multimode(values: List[Any])→ List[Any]
Requires Python 3.8

quantiles(values: List[Any], n=4, method=Literal['exclusive', 'inclusive'])→ Iterable[Iterable[Any]]
Requires Python 3.8

4.8.3 Measures of spread

See more in information in Python’s Documentation.

pstdev(values: List[Any], mu=Optional[float])→ Any

pvariance(values: List[Any], mu=Optional[float])→ Any

stdev(values: List[Any], xbar=Optional[float])→ Any

variance(values: List[Any], xbar=Optional[float])→ Any

4.8.4 Numeric Representation

See more in information in Python’s Documentation.

bin(value: int)→ str

hex(value: int)→ str

oct(value: int)→ str

ord(value: str)→ int

22 Chapter 4. Query Functions

https://docs.python.org/3/library/statistics.html
https://docs.python.org/3/library/statistics.html
https://docs.python.org/3/library/functions.html


Jira-Select Documentation, Release 3.2.0

4.9 List Operations

union(iterable: Iterable[X])→ X

4.10 Types

See more in information in Python’s Documentation.

bool(value: Any)→ bool

int(value: Any)→ int

set(value: Any)→ set

str(value: Any)→ str

tuple(value: Any)→ tuple

type(value: Any)→ str

4.11 Sorting

See more in information in Python’s Documentation.

reversed(iterable: List[Any])→ Iterable[List[Any]]

sorted(iterable: List[Any])→ Iterable[List[Any]]

4.12 Filtering & Mapping

simple_filter(iterable: Iterable[Any], **query_params: Dict[str, Any])→ Iterable[Any]

simple_filter_any(iterable: Iterable[Any], **query_params: Dict[str, Any])→ Iterable[Any]
These functions provide you with a simple way of filtering lists using a syntax reminiscent of Django’s ORM
query filter parameters.

• simple_filter: All provided query_params must match for the row to be returned.

• simple_filter_any: At least one provided param in query_params must match for the row to be re-
turned.

For example; to find issues having become resolved between two dates, you could run a query like the following:

select: "*"
from: issues
filter:
- simple_filter(

flatten_changelog(changelog),
field__eq="resolution",
toValue__ne=None,
created__lt=parse_datetime("2020-02-02"),

(continues on next page)

4.9. List Operations 23

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html


Jira-Select Documentation, Release 3.2.0

(continued from previous page)

created__gt=parse_datetime("2020-02-01"),
)

expand:
- changelog

Consult the documentation for QueryableList for information about the full scope of parameters available.

4.12.1 Python Builtin Functions

See more in information in Python’s Documentation.

filter(callable: Callable, Iterable[Any])→ Iterable[Any]

map(callable: Callable, Iterable[Any])→ Iterable[Any]

4.13 Logic Shortcuts

See more in information in Python’s Documentation.

all(iterable: List[Any])→ bool

any(iterable: List[Any])→ bool

4.14 Counting

See more in information in Python’s Documentation.

len(iterable: List[Any])→ int
You might be tempted to use count() given how we share many patterns with SQL, but this is what you actually
want to use.

4.15 Ranges

See more in information in Python’s Documentation.

range(stop: int)→ Iterable[int]

range(start: int, stop: int)→ Iterable[int]

range(start: int, stop: int, step: int)→ Iterable[int]

24 Chapter 4. Query Functions

https://github.com/kata198/QueryableList#user-content-operations
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html


Jira-Select Documentation, Release 3.2.0

4.16 Random

See more in information in Python’s Documentation.

random()→ float

randrange(stop: int)→ int

randrange(start: int, stop: int)→ int

randrange(start: int, stop: int, step: int)→ int

randint(low: int, high: int)→ int

choice(Sequence[Any])→ Any

4.16. Random 25

https://docs.python.org/3/library/random.html


Jira-Select Documentation, Release 3.2.0

26 Chapter 4. Query Functions



CHAPTER

FIVE

QUERY PARAMETERS

When writing some queries that you’d like to reuse later, you may find a reason to want to pass-in a parameter at query
runtime instead of altering the query directly. You can use query parameters for that.

For a contrived example, the below query will require that you specify a query parameter project that will be used
when interpreting the query.

select:
Issue Key: key

from: issues
where:
- project = "{params.project}"
- updated > "2023-01-01"

Note: See the “Can use query parameters?” section of Query Structure Overview for information about where these
may be used.

You can specify the parameters to use via the --param command-line argument like so:

jira-select run-query --param="project=MYPROJECT" my-query.yaml

27



Jira-Select Documentation, Release 3.2.0

28 Chapter 5. Query Parameters



CHAPTER

SIX

HOW TO

6.1 Use Functions

Your select, having, group_by, and sort_by sections have access to a wide range of functions as well as to the full
breadth of Python syntax. If the built-in functions aren’t enough, you can also just write your own and either register
them at runtime or make them persistently available via a setuptools entrypoint.

See Query Functions for a complete list of built-in functions.

6.2 Format data using functions

select:
Status: status
Summary: summary
Story Points: "{Story Points}"
Spring Count: len(customfield_10010)
Sprint Name: sprint_name(customfield_10010[-1])

from: issues

In the above example, two of the displayed columns are processed with a function:

• Sprint Count: Will render the number of array elements in the field containing the list of sprints in which this
issue was present.

• Sprint Name: Will show the name of the last sprint associated with the displayed issue.

6.3 Filter results using functions

select:
Status: status
Summary: summary
Story Points: "{Story Points}"

from: issues
having:
# The quoting below is required only because the first character of line
# being a double-quote causes YAML parsers to parse the line differently
- '"Sprint #19" in sprint_name(customfield_10010[-1])'

29



Jira-Select Documentation, Release 3.2.0

In the above example, the issues returned from Jira will be compared against each constraint you’ve entered in the
having section; in this case, all returned issues not having the string “Sprint #19” in the name of the last sprint
associated with the displayed issue will not be written to your output.

Note: having entries are processed locally instead of on the Jira server so filtering using having entries is slower than
using standard Jql due to the amount of (potentially) unnecessary data transfer involved. It is recommended that you
use having only when your logic cannot be expressed in standard Jql (i.e. in the where section).

6.4 Group results & calculate aggregates

You can group and/or aggregate your returned rows by using group_by:

select:
Status: status
Count: count(key)

from: issues
group_by:
- status

You’ll receive just a single result row for each status, and a count of how many records shared that status in the second
column.

6.5 Sort results using functions

You can order your entries using any expression, too:

select:
Status: status
Count: count(key)

from: issues
group_by:
- status

sort_by:
- count(key) desc

This will sort all returned tickets, grouped by status, in descending order from the status that has the most tickets to the
one that has the fewest.

Note: The sort_by section is evaluated locally instead of by your Jira server. In situations where your expression can
be evaluated in Jql, you will have faster performance using the order_by section.

30 Chapter 6. How to



Jira-Select Documentation, Release 3.2.0

6.6 Limit the number of returned results

You can limit the number of results returned by adding a limit to your query:

select:
Key: key
Status: status
Summary: summary

from: issues
where:
- assignee = "me@adamcoddington.net"

limit: 10

Be aware that this limit is handled by Jira; so only the first N records will be available for downstream steps in the
Query Lifecycle.

6.7 Expand Jira Issue Fields

You can ask Jira to expand issue fields by adding an expand element to your query:

select:
Key: key
Status: status
Summary: summary

from: issues
expand:
- transitions

The meaning of these expansions is defined by Jira; you can find more information in Jira’s documentation.

6.6. Limit the number of returned results 31

https://developer.atlassian.com/cloud/jira/platform/rest/v3/intro/#expansion


Jira-Select Documentation, Release 3.2.0

32 Chapter 6. How to



CHAPTER

SEVEN

EXAMPLES

7.1 Finding all issues assigned to a particular user

select: "*"
from: issues
where:
- assignee = "some-user@some-company.com"

7.2 Summing the number of story points assigned in a particular
sprint

select:
Total Story Points: sum({Story Points})

from: issues
where:
- project = "MYPROJECT"
group_by:
- True
having:
- '"My Sprint Name" in sprint_name({Sprint}[-1])'

In Jira, your “Story Points” and “Sprint” fields may have any number of names since they’re “Custom Fields” – their
real names are things like customfield10024 and customfield10428, but may vary instance to instance. You can
use the field name directly in your query, but if you know only the “human-readable” name for your field, you can
provide it in brackets as shown above with – {Story Points} and {Sprint}.

The where limitation here is used solely for reducing the number of records needing to be downloaded, and can be
omitted if you are willing to wait.

The group_by expression here is to make all of your rows be grouped together so the sum operation in your select
block will operate over all of the returned rows. True is used because that expression will evaluate to the same value
for every row.

In the having section, you can see a fairly complicated expression that takes the last sprint associated with each returned
issue, looks up that sprint’s name and compares it with the sprint name you are looking for. We’re using the in python
expression here because I can’t remember the full name, but I can remember part of it. You’ll notice that the line is
quoted; that’s necessary only because the yaml parser interprets a line starting with a double-quote a little differently
from one that does not. Try running the query without quoting the string to see what I mean.

33



Jira-Select Documentation, Release 3.2.0

7.3 Summing the total estimated size of issues per-person for a given
sprint

select:
Assignee: assignee
Total Size: sum(map(estimate_to_days, timeestimate.originalEstimate))

from: issues
where:
- project = "MYPROJECT"
group_by:
- assignee
having:
- '"My Sprint Name" in sprint_name({Sprint}[-1])'

See Summing the number of story points assigned in a particular sprint for an explanation of the having section here.

In Jira, estimations are stored in the timeestimate.originalEstimate field, but since we’ve grouped our rows by
assignee, timeestimate represents an array of objects instead of a single object holding the originalEstimate we
want.

If we were to stop here, we would receive an array of strings looking something like:

["1d", "4h", "2d", "30m"]

but, we want to be able to sum these estimates, so we’ll map each of those through the estimate_to_days function.
This will create an array like this:

[1, 0.5, 2, 0.625]

An array isn’t quite what we want – we want the total number of days – so we use the sum function to get that.

See Query Functions for more information.

7.4 Summing story points of issues resolved during a particular
sprint

select:
Assignee: assignee
Story Points: sum({Story Points})

from: issues
where:
- project = 'My Project'
filter:
- simple_filter(

flatten_changelog(changelog),
created__gt=parse_datetime(get_sprint_by_name("Board Name", "Sprint Name").

→˓startDate),
created__lt=parse_datetime(get_sprint_by_name("Board Name", "Sprint Name").endDate),
field__eq="resolution",
fromValue__eq=None,
toValue__ne=None

(continues on next page)

34 Chapter 7. Examples



Jira-Select Documentation, Release 3.2.0

(continued from previous page)

)
group_by:
- assignee
expand:
- changelog

The most important section in the above is in filter; here you’ll see that we’re using the simple_filter function
for filtering the (flattened) list of changelog entries to those changelog enttries that were created during the sprint and
indicate that the field resolution was changed from None to something that is not None.

For a row to be returned from filter, each expression should return a truthy value. So rows that do not have a
corresponding changelog entry matching the above requirements will be omitted from results.

7.5 Summing worklog entries

select:
Total Seconds: sum(extract(flatten_list(worklogs.worklogs), "timespentSeconds"))

from: issues
group_by:
- True

Worklog entries on issues are shaped like this for every row (unnecessary fields omitted):

{
"total": 1,
"worklogs": [

{"timespentSeconds": 60},
{"timespentSeconds": 100},

]
}

So, if we were to just select worklogs.worklogs we’d receive an array of results in this shape:

[
[

{"timespentSeconds": 60},
{"timespentSeconds": 100},

],
[

{"timespentSeconds": 50},
]

]

The value we need is nested deeply in there, so we should first try to flatten the list of lists using flatten_list; if we
do that, our list will become:

[
{"timespentSeconds": 60},
{"timespentSeconds": 100},
{"timespentSeconds": 50},

]

7.5. Summing worklog entries 35



Jira-Select Documentation, Release 3.2.0

We’re still not quite there – the value under timespentSeconds still needs to be extract``ed from the inner
objects using ``extract; if we do that we receive:

[
60,
100,
50

]

We finally have something summable & can wrap that set of calls with sum giving us an answer of 210.

The group_by expression here is to make all of your rows be grouped together so the sum operation in your select
block will operate over all of the returned rows. True is used because that expression will evaluate to the same value
for every row.

36 Chapter 7. Examples



CHAPTER

EIGHT

COMMAND-LINE

8.1 jira-select shell [–editor-mode=MODE] [–disable-progressbars]
[–output=PATH] [–format=FORMAT] [–launch-default-viewer]

Opens an interactive shell (a.k.a repl) allowing you to interact with Jira and see your query results immediately after-
ward.

This is a lot like the “shell” you might have used for postgres, mysql or sqlite. Except that this one syntax highlights
your query and has tab completion.

• --editor-mode=MODE: Set the editor mode to use; options include vi and emacs. The default value for this
can be set in your configuration file by setting shell.emacs_mode to True or False. See --help if you’re not
sure where your configuration file is.

• --disable-progressbars: By defualt, a pretty progressbar is displayed to provide an indication of how long
you might have to wait for results. Using this option will disable this progressbar.

• --output=PATH: Instead of writing output to a temporary file, write output to the specified file path. This is
useful if you’re using the --launch-default-viewer option to work around OS-level security limits around
what processes can read temporary files.

• --format=FORMAT: By default, the output is generated in json format, but you can select a different output
format by setting FORMAT to csv, html, table or json.

• --launch-default-viewer: Display the generated output in your system’s default viewer for the relevant
filetype. You may need to use this argument if you are running on an operating system in which Visidata is not
available (e.g. Windows when not running under Windows Subsystem for Linux).

8.2 jira-select run FILENAME [–format=FORMAT] [–output=PATH]
[–view] [–launch-default-viewer]

Executes query specified in FILENAME and returns results in the specified format.

• --format=FORMAT: Sets the output format; options include json (default) csv, html` and ``table.

• --output=PATH: Sets the output path. If unspecified, the output will be written to stdout.

• --view: Open the appropriate viewer to view your query results after the query has completed.

• --launch-default-viewer: Display the generated output in your system’s default viewer for the relevant
filetype.

37



Jira-Select Documentation, Release 3.2.0

8.3 jira-select install-user-script SCRIPT [–overwrite] [–name]

Installs a python script into your user scripts directory. User scripts can be used to extend the functionality of jira-
select by letting you write functions that can be available during your query operation. See Direct Registration for
more information about how to use this.

• SCRIPT: Path to the python script (or - to import from stdin) to add to your user scripts directory.

• --overwrite: By default, an error will be returned if your query script matches the name of an existing script.
Use this command-line argument if you would like to overwrite a script having the same name.

• --name: By default, the name will match the incoming filename (if it’s available). Use this to override that
behavior.

8.4 jira-select build-query [–output=PATH]

Allows you to interactively generate a query definition file.

• --output=PATH: Sets the output path. If unspecified, the output will be written to stdout.

8.5 jira-select configure

Allows you to interactively configure jira-select to connect to your Jira instance.

8.6 jira-select setup-instance

Configures an instance via the standard command-line arguments. See --help for more information. This is intended
to be used programmatically; if you are a human, you probably want to use configure instead.

8.7 jira-select –instance-name=NAME remove-instance

Removes configuration for the instance having the specified name.

8.8 jira-select show-instances [–json]

Displays for you which instances are currently configured for use with jira-select.

• --json: Instead of displaying results in a pretty-printed table, export the results as json.

38 Chapter 8. Command-Line



Jira-Select Documentation, Release 3.2.0

8.9 jira-select store-password USERNAME

Allows you to store a password for USERNAME in your system keychain.

• USERNAME: The username to store a password for.

8.10 jirafs-select functions [–having=EXPRESSION] [SEARCH_TERM
[SEARCH_TERM. . . ]]

Displays functions available for use in a query.

• --having=EXPRESSION: A having expression to use for filtering displayed results. The provided fields for
filtering are name and description.

• SEARCH_TERM: A search term to use for filtering results. The term is case-insensitive and must be present in
either the function name or description to be displayed.

8.11 jira-select schema [issues|boards|sprints] [–hav-
ing=EXPRESSION] [SEARCH_TERM [SEARCH_TERM. . . ]]
[–json]

Displays fields available for querying a given data source.

• --having=EXPRESSION: A having expression to use for filtering displayed results. The provided fields for
filtering are id, type, description, and raw.

• SEARCH_TERM: A search term to use for filtering results. The term is case-insensitive and must be present in
either the function name or description to be displayed.

• --json: Instead of displaying results in a pretty-printed table, export the results as json.

8.12 jira-select run-script FILENAME [ARGS. . . ]

Executes the main(**kwargs) function in the specified filename, passing it two keyword arguments:

• args: An array of extra arguments.

• cmd: The command class (via which you can access configuration, your jira instance, and other utilities).

This function is intended for use in ad-hoc scripting needs. If you are the sort of person to be running complex queries
against your Jira instance, you’re also likely to be the sort of person who will occasionally write an import script for
ingesting issues into Jira. This utility function allows you to do that more easily by letting you lean on the Jira settings
you’ve already configured jira-select to use.

Important: If you want to future-proof your script, be sure that the signature of your main function accepts **kwargs
even if your signature already captures args and cmd explicitly. New keyword arguments may be added at any time.

Example contenst of a user script named my_file.py:

8.9. jira-select store-password USERNAME 39



Jira-Select Documentation, Release 3.2.0

def main(args, cmd, **kwargs):
print(f"Extra args: {args}")
print(cmd.jira)

Running this file with:

jira-select run-script my_file.py --extra --args

Will print:

Extra args: ['--extra', '--args']
<jira.client.JIRA object at 0x7fc0a47e7e80>

40 Chapter 8. Command-Line



CHAPTER

NINE

WRITING YOUR OWN PLUGINS

Jira-select relies on setuptools entrypoints for determining what functions, commands, and formatters are available.
This makes it easy to write your own as long as you’re familiar with python packaging, and if you’re not, you can also
register functions at runtime.

9.1 Commands

To write your own commands, you need to:

1. Create a class that is a subclass of jira_select.plugin.BaseCommand. This command:

• Must implement a handle function.

2. Register that class via a setuptools entrypoint.

• Your entrypoint should be in the jira_select.commands section.

• The name of your entrypoint will become the command’s name.

9.2 Functions

For functions, you have two choices:

1. You can create and install a user script into your user functions and within that script register a function using
the method described in Direct Registration below.

3. If you plan to distribute your function on PyPI or would like for it to be installable generally, you can create an
entrypoint; see Entrypoint below for details.

9.2.1 Direct Registration

1. Create a function in a python file somewhere.

2. Wrapping that function in jira_select.plugin.register_function.

3. Install that user script using the install-user-script command.

For example, if you have a file named my_user_function.py in your current directory with the following contents:

from jira_select.plugin import register_function

(continues on next page)

41



Jira-Select Documentation, Release 3.2.0

(continued from previous page)

@register_function
def my_important_function(value):
"""Returns length of `value`

This function isn't doing anything useful, really, but
you could of course make it useful if you were to write
your own.

"""
return len(value)

you could install it with:

jira-select install-user-function my_user_function.py

and after that, you will have access to my_important_function in a query like:

select:
- my_important_function(key)
from: issues

9.2.2 Entrypoint

1. Create a class that is a subclass of jira_select.plugin.Function. This command:

• Must implement a __call__ function.

2. Register that class via a setuptools entrypoint.

• Your entrypoint should be in the jira_select.functions section.

9.3 Formatters

To write your own formatter, you need to:

1. Create a class that is a subclass of jira_select.plugin.BaseFormatter. This command:

• Must implement a writerow function.

• Must implement a get_file_extension classmethod returning your format’s file extension.

• May implement an open method for any setup functionality.

• May implement an close method for any teardown functionality.

2. Register that class via a setuptools entrypoint.

• Your entrypoint should be in the jira_select.formatters section.

42 Chapter 9. Writing your own plugins



CHAPTER

TEN

TROUBLESHOOTING

10.1 After running a query in jira-select’s shell subcommand, the
output results are printed directly to the screen instead of open-
ing in a spreadsheet viewer

The viewer you see being used on in the demo gif is called Visidata, and unfortunately it isn’t available on all platforms.
You do have a few options, though:

1. You could use the --format=table command-line argument to tell jira-select to print your output to the screen
in a fancy table mode.

2. You could ask jira-select to open the query results in your system’s defualt viewer using the
--launch-default-viewer command-line argument. On Windows, you will also need to specify an output
path explicitly to make this work by using --output=/some/path/to/write/output/to.csv.

3. If you’re running on Windows, you could install this under “Windows Subsystem for Linux” so that you can use
the default viewer (visidata). See more information here: Windows Subsystem for Linux Installation Guide for
Windows 10.

4. You could use the run-query subcommand instead of shell. This particular subcommand is a lot less fancy
than shell, though.

10.2 Sometimes filtering using having (or sorting using sort_by) on a
value I see in the output doesn’t work; why not?

Oftentimes the data returned from Jira for a particular field is not a simple string or number and is instead a complex
object full of other information. In those cases, we show the most reasonable string value was can obtain from the
object instead of showing you the whole object.

To use such objects in having or sort_by expressions, you should convert them into a reasonable simple data type
using one of the functions in Types.

If you’re curious about which fields we’re transforming into strings behind-the-scenes, try wrapping your column in
type to see the data’s actual type.

If you want to see the data that is being hidden by the above transformations – for example: for issuetype – you can
access the raw Jira object via the raw property of the field; e.g.

select:
Raw Issue Data: issuetype.raw

from: issues

43

https://www.visidata.org/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10


Jira-Select Documentation, Release 3.2.0

10.3 I can’t connect because my Jira instance uses a self-signed cer-
tificate

Don’t worry, there are two command-line arguments you can use for configuring certificate verification:

• --disable-certificate-verification: For the brave. This will entirely disable certificate verification for
this instance when configuring it as well as for all future connections to it.

• --certificate=/path/to/certificate: For the people who have a security team watching what they’re
doing. This will ask jira-select to use a particular self-signed certificate.

These are overrides available for all commands (not just configure) so these arguments can only be used between
jira-select and the command you’re running (probably only configure as when you use them with configure
those settings will be recorded in your configuration’s settings for the future):

jira-select --disable-certificate-verification configure

10.4 When attempting to use a field’s human readable name in curly
braces, I get a Parse Error

YAML, the file format we use for queries in jira-select, has some parsing rules that will make it interpret a line starting
with a quote, curly brace, bracket, or other reserved characters differently from other lines.

In cases like those, you should just wrap your whole query expression in quotes; for example:

select:
Story Points: '{Story Points}'

from: issues

44 Chapter 10. Troubleshooting



CHAPTER

ELEVEN

REFERENCE

11.1 API Reference

11.1.1 jira-select

jira_select package

Subpackages

jira_select.commands package

Submodules

jira_select.commands.build_query module

jira_select.commands.configure module

jira_select.commands.show_instances module

jira_select.commands.functions module

jira_select.commands.run module

jira_select.commands.schema module

jira_select.commands.shell module

jira_select.commands.store_password module

Module contents

jira_select.formatters package

Submodules

45



Jira-Select Documentation, Release 3.2.0

jira_select.formatters.json module

jira_select.formatters.csv module

jira_select.formatters.tsv module

jira_select.formatters.html module

jira_select.formatters.table module

jira_select.formatters.raw module

Module contents

jira_select.functions package

Submodules

jira_select.functions.estimate_to_days module

jira_select.functions.extract module

jira_select.functions.field_by_name module

jira_select.functions.sprint_details module

jira_select.functions.sprint_name module

Module contents

Submodules

jira_select.cmdline module

jira_select.constants module

jira_select.exceptions module

jira_select.plugin module

jira_select.query module

jira_select.types module

jira_select.utils module

46 Chapter 11. Reference



Jira-Select Documentation, Release 3.2.0

Module contents

setup module

tests package

Submodules

tests.base module

tests.test_query module

tests.test_utils module

Module contents

11.1. API Reference 47



Jira-Select Documentation, Release 3.2.0

48 Chapter 11. Reference



CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• modindex

• search

49



Jira-Select Documentation, Release 3.2.0

50 Chapter 12. Indices and tables



INDEX

A
abs()

built-in function, 21
all()

built-in function, 24
any()

built-in function, 24

B
bin()

built-in function, 22
bool()

built-in function, 23
built-in function

abs(), 21
all(), 24
any(), 24
bin(), 22
bool(), 23
choice(), 25
closed_interval(), 21
closedopen_interval(), 21
datetime(), 20
empty_interval(), 21
estimate_to_days(), 16
extract(), 20
field_by_name(), 16
filter(), 24
flatten_changelog(), 17
flatten_list(), 20
fmean(), 22
geometric_mean(), 22
get_issue(), 15
get_issue_snapshot_on_date(), 15
get_linked_issue_keys(), 17
get_sprint_by_id(), 16
get_sprint_by_name(), 16
harmonic_mean(), 22
hex(), 22
int(), 23
interval_business_hours(), 19
interval_matching(), 18

interval_size(), 18
json_dumps(), 21
json_loads(), 21
len(), 24
map(), 24
max(), 21
mean(), 22
median(), 22
median_grouped(), 22
median_high(), 22
median_low(), 22
min(), 21
mode(), 22
multimode(), 22
now(), 20
oct(), 22
open_interval(), 21
openclosed_interval(), 21
ord(), 22
parse_date(), 20
parse_datetime(), 20
pow(), 21
pstdev(), 22
pvariance(), 22
quantiles(), 22
randint(), 25
random(), 25
randrange(), 25
range(), 24
reversed(), 23
round(), 21
set(), 23
simple_filter(), 23
simple_filter_any(), 23
sorted(), 23
sprint_details(), 15
sprint_name(), 15
stdev(), 22
str(), 23
subquery(), 18
sum(), 21
timedelta(), 20

51



Jira-Select Documentation, Release 3.2.0

tuple(), 23
type(), 23
union(), 23
variance(), 22

C
choice()

built-in function, 25
closed_interval()

built-in function, 21
closedopen_interval()

built-in function, 21

D
datetime()

built-in function, 20

E
empty_interval()

built-in function, 21
estimate_to_days()

built-in function, 16
extract()

built-in function, 20

F
field_by_name()

built-in function, 16
filter()

built-in function, 24
flatten_changelog()

built-in function, 17
flatten_list()

built-in function, 20
fmean()

built-in function, 22

G
geometric_mean()

built-in function, 22
get_issue()

built-in function, 15
get_issue_snapshot_on_date()

built-in function, 15
get_linked_issue_keys()

built-in function, 17
get_sprint_by_id()

built-in function, 16
get_sprint_by_name()

built-in function, 16

H
harmonic_mean()

built-in function, 22
hex()

built-in function, 22

I
int()

built-in function, 23
interval_business_hours()

built-in function, 19
interval_matching()

built-in function, 18
interval_size()

built-in function, 18

J
json_dumps()

built-in function, 21
json_loads()

built-in function, 21

L
len()

built-in function, 24

M
map()

built-in function, 24
max()

built-in function, 21
mean()

built-in function, 22
median()

built-in function, 22
median_grouped()

built-in function, 22
median_high()

built-in function, 22
median_low()

built-in function, 22
min()

built-in function, 21
mode()

built-in function, 22
multimode()

built-in function, 22

N
now()

built-in function, 20

O
oct()

built-in function, 22

52 Index



Jira-Select Documentation, Release 3.2.0

open_interval()
built-in function, 21

openclosed_interval()
built-in function, 21

ord()
built-in function, 22

P
parse_date()

built-in function, 20
parse_datetime()

built-in function, 20
pow()

built-in function, 21
pstdev()

built-in function, 22
pvariance()

built-in function, 22

Q
quantiles()

built-in function, 22

R
randint()

built-in function, 25
random()

built-in function, 25
randrange()

built-in function, 25
range()

built-in function, 24
reversed()

built-in function, 23
round()

built-in function, 21

S
set()

built-in function, 23
simple_filter()

built-in function, 23
simple_filter_any()

built-in function, 23
sorted()

built-in function, 23
sprint_details()

built-in function, 15
sprint_name()

built-in function, 15
stdev()

built-in function, 22
str()

built-in function, 23

subquery()
built-in function, 18

sum()
built-in function, 21

T
timedelta()

built-in function, 20
tuple()

built-in function, 23
type()

built-in function, 23

U
union()

built-in function, 23

V
variance()

built-in function, 22

Index 53


	Quickstart
	Query Format
	Query Structure Overview
	What is a JqlString
	What is an Expression

	Ubiquitous
	select
	from

	Common
	where
	issues
	boards
	sprints

	order_by
	group_by
	having
	calculate
	sort_by
	limit
	cache

	Unusual
	expand
	filter
	cap


	Query Lifecycle
	Query Functions
	Jira
	Subquery
	Time Analysis
	Data Traversal
	Dates
	Intervals
	Json
	Math
	Basic
	Averages & measures of central location
	Measures of spread
	Numeric Representation

	List Operations
	Types
	Sorting
	Filtering & Mapping
	Python Builtin Functions

	Logic Shortcuts
	Counting
	Ranges
	Random

	Query Parameters
	How to
	Use Functions
	Format data using functions
	Filter results using functions
	Group results & calculate aggregates
	Sort results using functions
	Limit the number of returned results
	Expand Jira Issue Fields

	Examples
	Finding all issues assigned to a particular user
	Summing the number of story points assigned in a particular sprint
	Summing the total estimated size of issues per-person for a given sprint
	Summing story points of issues resolved during a particular sprint
	Summing worklog entries

	Command-Line
	jira-select shell [–editor-mode=MODE] [–disable-progressbars] [–output=PATH] [–format=FORMAT] [–launch-default-viewer]
	jira-select run FILENAME [–format=FORMAT] [–output=PATH] [–view] [–launch-default-viewer]
	jira-select install-user-script SCRIPT [–overwrite] [–name]
	jira-select build-query [–output=PATH]
	jira-select configure
	jira-select setup-instance
	jira-select –instance-name=NAME remove-instance
	jira-select show-instances [–json]
	jira-select store-password USERNAME
	jirafs-select functions [–having=EXPRESSION] [SEARCH_TERM [SEARCH_TERM…]]
	jira-select schema [issues|boards|sprints] [–having=EXPRESSION] [SEARCH_TERM [SEARCH_TERM…]] [–json]
	jira-select run-script FILENAME [ARGS…]

	Writing your own plugins
	Commands
	Functions
	Direct Registration
	Entrypoint

	Formatters

	Troubleshooting
	After running a query in jira-select’s shell subcommand, the output results are printed directly to the screen instead of opening in a spreadsheet viewer
	Sometimes filtering using having (or sorting using sort_by) on a value I see in the output doesn’t work; why not?
	I can’t connect because my Jira instance uses a self-signed certificate
	When attempting to use a field’s human readable name in curly braces, I get a Parse Error

	Reference
	API Reference
	jira-select
	jira_select package
	Subpackages
	jira_select.commands package
	Submodules
	jira_select.commands.build_query module
	jira_select.commands.configure module
	jira_select.commands.show_instances module
	jira_select.commands.functions module
	jira_select.commands.run module
	jira_select.commands.schema module
	jira_select.commands.shell module
	jira_select.commands.store_password module
	Module contents
	jira_select.formatters package
	Submodules
	jira_select.formatters.json module
	jira_select.formatters.csv module
	jira_select.formatters.tsv module
	jira_select.formatters.html module
	jira_select.formatters.table module
	jira_select.formatters.raw module
	Module contents
	jira_select.functions package
	Submodules
	jira_select.functions.estimate_to_days module
	jira_select.functions.extract module
	jira_select.functions.field_by_name module
	jira_select.functions.sprint_details module
	jira_select.functions.sprint_name module
	Module contents

	Submodules
	jira_select.cmdline module
	jira_select.constants module
	jira_select.exceptions module
	jira_select.plugin module
	jira_select.query module
	jira_select.types module
	jira_select.utils module
	Module contents

	setup module
	tests package
	Submodules
	tests.base module
	tests.test_query module
	tests.test_utils module
	Module contents




	Indices and tables
	Index

